alexa CAD-based shape optimisation with CFD using a discrete adjoint


Advances in Automobile Engineering

Author(s): JensDominik Mller, Wolfram Jahn

Abstract Share this page

One of the major challenges of shape optimisation in practical industrial cases is to generically parametrise the wide range of complex shapes. A novel approach is presented, which takes CAD descriptions as input and produces the optimal shape in CAD form using the control points of the Non-Uniform Rational B-Splines (NURBS) boundary representation as design variables. An implementation of the NURBS equations in source allows to include the CAD-based shape deformation inside the design loop and evaluate its sensitivities efficiently and robustly. In order to maintain or establish the required level of geometric continuity across patch interfaces, geometric constraints are imposed on the control point displacements. The paper discusses the discrete adjoint flow solver used and the computation of the complete sensitivities of the design loop by differentiating all components using automatic differentiation tools. The resulting rich but smooth deformation space is demonstrated on the optimisation of a vehicle climate duct. Copyright © 2013 John Wiley & Sons, Ltd.

This article was published in wiley and referenced in Advances in Automobile Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version