alexa Calcium, ATP, and ROS: a mitochondrial love-hate triangle


Journal of Clinical & Experimental Pathology

Author(s): Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS

Abstract Share this page

The mitochondrion is at the core of cellular energy metabolism, being the site of most ATP generation. Calcium is a key regulator of mitochondrial function and acts at several levels within the organelle to stimulate ATP synthesis. However, the dysregulation of mitochondrial Ca(2+) homeostasis is now recognized to play a key role in several pathologies. For example, mitochondrial matrix Ca(2+) overload can lead to enhanced generation of reactive oxygen species, triggering of the permeability transition pore, and cytochrome c release, leading to apoptosis. Despite progress regarding the independent roles of both Ca(2+) and mitochondrial dysfunction in disease, the molecular mechanisms by which Ca(2+) can elicit mitochondrial dysfunction remain elusive. This review highlights the delicate balance between the positive and negative effects of Ca(2+) and the signaling events that perturb this balance. Overall, a "two-hit" hypothesis is developed, in which Ca(2+) plus another pathological stimulus can bring about mitochondrial dysfunction

This article was published in Am J Physiol Cell Physiol. and referenced in Journal of Clinical & Experimental Pathology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version