alexa Calcium has a permissive role in interleukin-1beta-induced c-jun N-terminal kinase activation in insulin-secreting cells.
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Developing Drugs

Author(s): Strling J, Zaitsev SV, Kapelioukh IL, Karlsen AE, Billestrup N, , Strling J, Zaitsev SV, Kapelioukh IL, Karlsen AE, Billestrup N,

Abstract Share this page

Abstract The c-jun N-terminal kinase (JNK) signaling pathway mediates IL-1beta-induced apoptosis in insulin-secreting cells, a mechanism relevant to the destruction of pancreatic beta-cells in type 1 and 2 diabetes. However, the mechanisms that contribute to IL-1beta activation of JNK in beta-cells are largely unknown. In this study, we investigated whether Ca(2+) plays a role for IL-1beta-induced JNK activation. In insulin-secreting rat INS-1 cells cultured in the presence of 11 mm glucose, combined pharmacological blockade of L- and T-type Ca(2+) channels suppressed IL-1beta-induced in vitro phosphorylation of the JNK substrate c-jun and reduced IL-1beta-stimulated activation of JNK1/2 as assessed by immunoblotting. Inhibition of IL-1beta-induced in vitro kinase activity toward c-jun after collective L- and T-type Ca(2+) channel blockade was confirmed in primary rat and ob/ob mouse islets and in mouse betaTC3 cells. Ca(2+) influx, specifically via L-type but not T-type channels, contributed to IL-1beta activation of JNK. Activation of p38 and ERK in response to IL-1beta was also dependent on L-type Ca(2+) influx. Membrane depolarization by KCl, exposure to high glucose, treatment with Ca(2+) ionophore A23187, or exposure to thapsigargin, an inhibitor of sarco(endo)plasmic reticulum Ca(2+) ATPase, all caused an amplification of IL-1beta-induced JNK activation in INS-1 cells. Finally, a chelator of intracellular free Ca(2+) [bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid-acetoxymethyl], an inhibitor of calmodulin (W7), and inhibitors of Ca(2+)/calmodulin-dependent kinase (KN62 and KN93) partially reduced IL-1beta-stimulated c-jun phosphorylation in INS-1 or betaTC3 cells. Our data suggest that Ca(2+) plays a permissive role in IL-1beta activation of the JNK signaling pathway in insulin-secreting cells. This article was published in Endocrinology and referenced in Journal of Developing Drugs

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version