alexa Calcium in ischemic cell death.
Biomedical Sciences

Biomedical Sciences

Journal of Bioanalysis & Biomedicine

Author(s): Kristin T, Siesj BK

Abstract Share this page

Abstract BACKGROUND: This review article deals with the role of calcium in ischemic cell death. A calcium-related mechanism was proposed more than two decades ago to explain cell necrosis incurred in cardiac ischemia and muscular dystrophy. In fact, an excitotoxic hypothesis was advanced to explain the acetylcholine-related death of muscle end plates. A similar hypothesis was proposed to explain selective neuronal damage in the brain in ischemia, hypoglycemic coma, and status epilepticus. SUMMARY OF REVIEW: The original concepts encompass the hypothesis that cell damage in ischemia-reperfusion is due to enhanced activity of phospholipases and proteases, leading to release of free fatty acids and their breakdown products and to degradation of cytoskeletal proteins. It is equally clear that a coupling exists between influx of calcium into cells and their production of reactive oxygen species, such as .O2, H2O2, and .OH. Recent results have underscored the role of calcium in ischemic cell death. A coupling has been demonstrated among glutamate release, calcium influx, and enhanced production of reactive metabolites such as .O2-, .OH, and nitric oxide. It has become equally clear that the combination of .O2- and nitric oxide can yield peroxynitrate, a metabolite with potentially devastating effects. The mitochondria have again come into the focus of interest. This is because certain conditions, notably mitochondrial calcium accumulation and oxidative stress, can trigger the assembly (opening) of a high-conductance pore in the inner mitochondrial membrane. The mitochondrial permeability transition (MPT) pore leads to a collapse of the electrochemical potential for H+, thereby arresting ATP production and triggering production of reactive oxygen species. The occurrence of an MPT in vivo is suggested by the dramatic anti-ischemic effect of cyclosporin A, a virtually specific blocker of the MPT in vitro in transient forebrain ischemia. However, cyclosporin A has limited effect on the cell damage incurred as a result of 2 hours of focal cerebral ischemia, suggesting that factors other than MPT play a role. It is discussed whether this could reflect the operation of phospholipase A2 activity and degradation of the lipid skeleton of the inner mitochondrial membrane. CONCLUSIONS: Calcium is one of the triggers involved in ischemic cell death, whatever the mechanism.
This article was published in Stroke and referenced in Journal of Bioanalysis & Biomedicine

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version