alexa Calcium-dependent signaling mechanisms and soleus fiber remodeling under gravitational unloading.
Biomedical Sciences

Biomedical Sciences

Journal of Bioanalysis & Biomedicine

Author(s): Shenkman BS, Nemirovskaya TL

Abstract Share this page

Abstract The decrease in postural muscle fiber size, diminishing of their contractile properties, slow-to-fast shift in myosin heavy chain expression pattern are known to be the main consequences of gravitational unloading. The Ca(2+) role in these processes has been studied for about 20 years. Ingalls et al. [J Appl Physiol 87(1):382-390, 1999] found the resting Ca(2+) level increase in soleus fibers of hindlimb unloaded mice. Results obtained in our laboratory showed that systemic or local application of nifedipine (L-type Ca(2+) channels' blocker) prevents Ca(2+) accumulation in fibers. Thus, activation of dihydropyridine calcium channels can be supposed to promote resting Ca(2+) loading under disuse. So, calcium-dependent signaling pathways may play an important role in the development of some key events observed under unloading. Since 90th the increased activities of Ca(2+)-dependent proteases (calpains) were considered as the crucial effect of hypogravity-induced muscle atrophy, which was proved later. We observed maintenance of titin and nebulin relative content in soleus muscle under unloading combined with Ca(2+) chelators administration. Nifedipine administration was shown to considerably restrict the slow-to-fast transition of myosin heavy chains (MHC) under unloading (at the RNA level and at the protein level as well). To clarify the role of calcineurin/NFAT signaling system in MHC pattern transition under unloading, we blocked this pathway by cyclosporine A application. Hereby, we demonstrated that calcineurin/NFAT pathway possesses a stabilizing function counteracting the myosin phenotype transformation under gravitational unloading. This article was published in J Muscle Res Cell Motil and referenced in Journal of Bioanalysis & Biomedicine

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

agriaquaculture@omicsonline.com

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

biochemjournals@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

chemistryjournals@omicsonline.com

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

clinicaljournals@omicsonline.com

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

engineeringjournals@omicsonline.com

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

nutritionjournals@omicsonline.com

1-702-714-7001Extn: 9042

General Science

Andrea Jason

generalscience@omicsonline.com

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

geneticsmolbio@omicsonline.com

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immunomicrobiol@omicsonline.com

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

nursinghealthcare@omicsonline.com

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

medicaljournals@omicsonline.com

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuropsychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

pharmajournals@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords