alexa Caloric restriction alters the feeding response of key metabolic enzyme genes.


Journal of Nutritional Disorders & Therapy

Author(s): Dhahbi JM, Mote PL, Wingo J, Rowley BC, Cao SX,

Abstract Share this page

Abstract Differential 'fuel usage' has been proposed as a mechanism for life-span extension by caloric restriction (CR). Here, we report the effects of CR, initiated after weaning, on metabolic enzyme gene expression 0, 1.5, 5, and 12 h after feeding of 24-month-old mice. Plasma glucose and insulin were reduced by approximately 20 and 80\%. Therefore, apparent insulin sensitivity, as judged by the glucose to insulin ratio, increased 3.3-fold in CR mice. Phosphoenolpyruvate carboxykinase mRNA and activity were transiently reduced 1.5 h after feeding, but were 20-100\% higher in CR mice at other times. Glucose-6-phosphatase mRNA was induced in CR mice and repressed in control mice before, and for 5 h following feeding. Feeding transiently induced glucokinase mRNA fourfold in control mice, but only slightly in CR mice. Pyruvate kinase and pyruvate dehydrogenase activities were reduced approximately 50\% in CR mice at most times. Feeding induced glutaminase mRNA, and carbamyl phosphate synthetase I and glutamine synthase activity (and mRNA). They were each approximately twofold or higher in CR mice. These results indicate that in mice, CR maintains higher rates of gluconeogenesis and protein catabolism, even in the hours after feeding. The data are consistent with the idea that CR continuously promotes the turnover and replacement of extrahepatic proteins.
This article was published in Mech Ageing Dev and referenced in Journal of Nutritional Disorders & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version