alexa Can CT-based patient-matched instrumentation achieve consistent rotational alignment in knee arthroplasty?


Journal of Osteoarthritis

Author(s): C O Tibesku, B Innocenti, P Wong, A Salehi, L Labey

Abstract Share this page

Purpose: Long-term success of contemporary total knee replacements relies to a large extent on proper implant alignment. This study was undertaken to test whether specimen-matched cutting blocks based on computed axial tomography (CT) scans could provide accurate rotational alignment of the femoral component.
Methods: CT scans of five fresh frozen full leg cadaver specimens, equipped with infrared reflective markers, were used to produce a specimen-matched femoral cutting block. Using those blocks, the bone cuts were made to implant a bi-compartmental femoral component. Rotational alignment of the components in the horizontal plane was determined using an optical measurement system and compared with all relevant rotational reference axes identified on the CT scans.
Results: Average rotational alignment for the bi-compartmental component in the horizontal plane was 1.9° (range 0°–6.3°; standard deviation 2.6°). One specimen that showed the highest deviation from the planned alignment also featured a completely degraded medial articular surface.
Conclusions: The CT-based specimen-matched cutting blocks achieved good rotational alignment accuracy except for one specimen with badly damaged cartilage. In such cases, imaging techniques that visualize the cartilage layer might be more suitable to design cutting blocks, as they will provide a better fit and increased surface support.

This article was published in Archives of Orthopaedic and Trauma Surgery and referenced in Journal of Osteoarthritis

Relevant Expert PPTs

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version