alexa Can one angle be simply subtracted from another to determine range of motion in three-dimensional motion analysis?
Social & Political Sciences

Social & Political Sciences

Anthropology

Author(s): Michaud B, Jackson MI, Prince F, Begon MS

Abstract Share this page

Abstract To determine the range of motion of a joint between an initial orientation and a final orientation, it is convenient to subtract initial joint angles from final joint angles, a method referred to as the vectorial approach. However, for three-dimensional movements, the vectorial approach is not mathematically correct. To determine the joint range of motion, the rotation matrix between the two orientations should be calculated, and angles describing the range of motion should be extracted from this matrix, a method referred to as the matrical approach. As the matrical approach is less straightforward to implement, it is of interest to identify situations in which the vectorial approach leads to insubstantial errors. In this study, the vectorial approach was compared to the matrical approach, and theoretical justification was given for situations in which the vectorial approach can reasonably be used. The main findings are that the vectorial approach can be used if (1) the motion is planar (Woltring HJ. 1994. 3-D attitude representation of human joints: a standardization proposal. J Biomech 27(12): 1399-1414), (2) the angles between the final and the initial orientation are small (Woltring HJ. 1991. Representation and calculation of 3-D joint movement. Hum Mov Sci 10(5): 603-616), (3) the angles between the initial orientation of the distal segment and the proximal segment are small and finally (4) when only one large angle occurs between the initial orientation of the distal segment and the proximal segment and the angle sequence is chosen in such a way that this large angle occurs on the first axis of rotation. These findings provide specific criteria to consider when choosing the angle sequence to use for movement analysis. This article was published in Comput Methods Biomech Biomed Engin and referenced in Anthropology

Relevant Expert PPTs

Recommended Conferences

  • World conference on Ecology and Ecosystems
    September 11-13, 2017 San Antonio, USA
  • 6th International Conference on Forensic Research & Technology
    Sep 18-20, 2017 Houston, USA
  • 2nd World Congress on Health and Medical Sociology
    September 25-26, 2017 Atlanta, Georgia, USA
  • 2nd Experts Meeting on Forensic Psychology and Criminology
    October 02-03, 2017 London, UK

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords