alexa Canstatin acts on endothelial and tumor cells via mitochondrial damage initiated through interaction with alphavbeta3 and alphavbeta5 integrins.


Journal of Cancer Science & Therapy

Author(s): Magnon C, Galaup A, Mullan B, Rouffiac V, Bouquet C, , Magnon C, Galaup A, Mullan B, Rouffiac V, Bouquet C,

Abstract Share this page

Abstract Canstatin, the noncollagenous domain of collagen type IV alpha-chains, belongs to a series of collagen-derived angiogenic inhibitors. We have elucidated the functional receptors and intracellular signaling induced by canstatin that explain its strong antitumor efficacy in vivo. For this purpose, we generated a canstatin-human serum albumin (CanHSA) fusion protein, employing the HSA moiety as an expression tag. We show that CanHSA triggers a crucial mitochondrial apoptotic mechanism through procaspase-9 cleavage in both endothelial and tumor cells, which is mediated through cross-talk between alphavbeta3- and alphavbeta5-integrin receptors. As a point of reference, we employed the first three kringle domains of angiostatin (K1-3), fused with HSA, which, in contrast to CanHSA, act only on endothelial cells through alphavbeta3-integrin receptor-mediated activation of caspase-8 alone, without ensuing mitochondrial damage. Taken together, these results provide insights into how canstatin might exert its strong anticancer effect. This article was published in Cancer Res and referenced in Journal of Cancer Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version