alexa Capsaicin Blocks the Hyperpolarization-Activated Inward Currents via TRPV1 in the Rat Dorsal Root Ganglion Neurons.


Alternative & Integrative Medicine

Author(s): Kwak J

Abstract Share this page

Abstract Capsaicin, the pungent ingredient in hot pepper, activates nociceptors to produce pain and inflammation. However, prolonged exposures of capsaicin will cause desensitization to nociceptive stimuli. Hyperpolarization-activated cation currents (I(h)) contribute to the maintenance of the resting membrane potential and excitability of neurons. In the cultured dorsal root ganglion (DRG) neurons, we investigated mechanisms underlying capsaicin-mediated modulation of I(h) using patch clamp recordings. Capsaicin (1 µM) inhibited I(h) only in the capsaicin-sensitive neurons. The capsaicin-induced inhibition of I(h) was prevented by preexposing the TRPV1 antagonist, capsazepine (CPZ). Capsaicin-induced inhibition of I(h) was dose dependent (IC(50)= 0.68 µM) and partially abolished by intracellular BAPTA and cyclosporin A, specific calcineurin inhibitor. In summary, the inhibitory effects of capsaicin on I(h) are mediated by activation of TRPV1 and Ca(2+)-triggered cellular responses. Analgesic effects of capsaicin have been thought to be related to desensitization of nociceptive neurons due to depletion of pain-related substances. In addition, capsaicin-induced inhibition of I(h) is likely to be important in understanding the analgesic mechanism of capsaicin.
This article was published in Exp Neurobiol and referenced in Alternative & Integrative Medicine

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version