alexa Carbocatalysts: graphene oxide and its derivatives.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Su C, Loh KP

Abstract Share this page

Abstract Graphene oxide (GO) sheets are emerging as a new class of carbocatalysts. Conventionally, researchers exfoliate graphite oxide into submicrometer-sized, water-dispersible flakes to produce these sheets. The presence of oxygen functional groups on the aromatic scaffold of GO allows these sheets to mediate ionic and nonionic interactions with a wide range of molecules. GO shows remarkable catalytic properties on its own and when hybridized with a second material. It is a perfect platform for molecular engineering. This Account examines the different classes of synthetic transformations catalyzed by GO and correlates its reactivity with chemical properties. First, we raise the question of whether GO behaves as a reactant or catalyst during oxidation. Due to its myriad oxygen atoms, GO can function as an oxidant during anaerobic oxidation and become reduced at the end of the first catalytic cycle. However, partially reduced GO can continue to activate molecular oxygen during aerobic oxidation. Most importantly, we can enhance the conversion and selectivity by engineering the morphology and functionalities on the G/GO scaffold. GO can also be hybridized with organic dyes or organocatalysts. The photosensitization by dyes and facile charge transfer across the graphene interface produce synergistic effects that enhance catalytic conversion. Using GO as a building block in supramolecular chemistry, we can extend the scope of functionalities in GO hybrids. The presence of epoxy and hydroxyl functional groups on either side of the GO sheet imparts bifunctional properties that allow it to act as a structural node within metal-organic frameworks (MOFs). For example, known homogeneous molecular catalysts can be anchored on the GO surface by employing them as scaffolds linking organometallic nodes. We have demonstrated that porphyrin building blocks with GO can lead to facile four-electron oxygen transfer reactions. We have also evaluated the advantages and disadvantages of GO as a catalytic material relative to other types of catalysts, both metallic and nonmetallic. Researchers would like to increase the potency of GO catalysts because many catalytic reactions currently require high loading of GO. Further research is also needed to identify a low-cost and environmentally friendly method for the synthesis of GO. This article was published in Acc Chem Res and referenced in Journal of Nanomedicine & Nanotechnology

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords