alexa Carboxymethyl chitosan as a matrix material for platinum, gold, and silver nanoparticles.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Laudenslager MJ, Schiffman JD, Schauer CL

Abstract Share this page

Abstract Carboxymethyl chitosan (CMC) was evaluated for its use in the synthesis and stabilization of catalytic nanoparticles for the first time. Many studies have reported on the ability of chitosan to bind with metal ions and support metal nanoparticles. CMC has a higher reported chelation capacity than chitosan, which has potential implications for improved catalyst formation and immobilization. Platinum, gold, and silver nanoparticles were synthesized in both chitosan and CMC. Particle size, morphology, and aggregation were examined using transmission electron microscopy (TEM). Complexation of nanoparticles was studied through Fourier transform infrared spectroscopy (FTIR). Similar nanoparticle size distributions were observed in the two polymers; however, CMC was observed to have higher rates of aggregation. This indicates that the carboxymethyl groups did not change nanoparticle formation; however, poor cross-linking and a limited anchoring ability of CMC led to the inability to immobilize the catalyst materials effectively. This article was published in Biomacromolecules and referenced in Journal of Nanomedicine & Nanotechnology

Relevant Expert PPTs

Recommended Conferences

  • Nano Congress for Next Generation
    August 31-September 01, 2017 Brussels,Belgium
  • Graphene & 2D Materials
    September 14-15, 2017 Edinburgh, Scotland
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version