alexa Cardiac tissue engineering.
Molecular Biology

Molecular Biology

Journal of Cell Science & Therapy

Author(s): Eschenhagen T, Didi M, Heubach J, Ravens U, Zimmermann WH

Abstract Share this page

Abstract Recent progress in implantations of differentiated cardiac and non-cardiac cells as well as adult stem cells into the heart suggests that the irreversible loss of viable cardiac myocytes that occurs during myocardial infarction can be at least partly substituted. We evaluated an alternative approach by reconstituting cardiac tissue grafts in vitro and implanting them as spontaneously and coherently contracting tissues. For this purpose we have optimized a method to generate ring-shaped three-dimensional engineered heart tissue (EHT) in vitro from neonatal rat cardiac myocytes. When subjected to isometric force measurements in organ baths, electrically stimulated EHTs exhibit a Frank-Starling behavior, a positive inotropic response to increases in extracellular calcium, a positive inotropic and lusitropic response to isoprenaline, and a negative inotropic response to the muscarinic agonist carbachol ('accentuated antagonism'). Twitch tension under maximal calcium amounts to 1-2 mN/ mm2. Importantly, passive (resting) tension is low, yielding a ratio of active/passive tension of approximately 1.5 under basal and 14 under maximal calcium. Morphologically, EHTs represent a highly interconnected three-dimensional network of cardiac myocytes resembling loose cardiac tissue with a high fraction of binucleated cardiac myocytes, strong eosin staining and elongated centrally located nuclei. Electron microscopy demonstrated well developed sarcomeric structures, T-tubules, SR vesicles, T-tubule-SR-junctions, all types of intercellular connective structures, and a basement membrane. Thus, EHTs comprise functional and morphological properties of intact, ventricular myocardium. First implantation experiments of EHTs in the peritoneum of Fischer 344 rats showed that EHTs survived for at least 14 days, maintained a network of differentiated cardiac myocytes, and were strongly vascularized. Thus, EHTs may serve as material for a novel tissue replacement approach.
This article was published in Transpl Immunol and referenced in Journal of Cell Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords