alexa Carnosine-related dipeptides in the mammalian brain.


Journal of Clinical Toxicology

Author(s): Bonfanti L, Peretto P, De Marchis S, Fasolo A

Abstract Share this page

Abstract Carnosine and structurally related dipeptides are a group of histidine-containing molecules widely distributed in vertebrate organisms and particularly abundant in muscle and nervous tissue. Although many theories have been proposed, the biological function(s) of these compounds in the nervous system remains enigmatic. The purpose of this article is to review the distribution of carnosine-related dipeptides in the mammalian brain, with particular reference to some cell populations wherein these molecules have been demonstrated to occur very recently. The high expression of carnosine in the mammalian olfactory receptor neurons led to infer that this dipeptide could play a role as a neurotransmitter/modulator in olfaction. This prediction, which has not yet been fully demonstrated, does not explain the localization of carnosine-related dipeptides in other cell types, such as glial and ependymal cells. A recent demonstration of high carnosine-like immunoreactivity in the subependymal layer of rodents, an area of the forebrain which shares with the olfactory neuroepithelium the occurrence of continuous neurogenesis during adulthood, supports the hypothesis that carnosine-related dipeptides could be implicated in some forms of structural plasticity. However, the particular distribution of these molecules in the subependymal layer, along with their expression in glial/ependymal cell populations, suggests that they are not directly linked to cell migration or cell renewal. In the absence of a unified theory about the role of carnosine-related dipeptides in the nervous system, some common features shared by different cell populations of the mammalian brain which contain these molecules are discussed.
This article was published in Prog Neurobiol and referenced in Journal of Clinical Toxicology

Relevant Expert PPTs

Relevant Speaker PPTs

  • R Gandhi Gracy
    DO Insect - Bacterial Symbiosis contributing insecticidal resistance: An evidence from Helicoverpa armigera (Hub.) (Lepidoptera: Noctuidae)
    PPT Version | PDF Version

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version