alexa Carotenoid silk coloration is controlled by a carotenoid-binding protein, a product of the Yellow blood gene.
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Bioequivalence & Bioavailability

Author(s): Sakudoh T, Sezutsu H, Nakashima T, Kobayashi I, Fujimoto H,

Abstract Share this page

Abstract Mechanisms for the uptake and transport of carotenoids, essential nutrients for humans, are not well understood in any animal system. The Y (Yellow blood) gene, a critical cocoon color determinant in the silkworm Bombyx mori, controls the uptake of carotenoids into the intestinal mucosa and the silk gland. Here we provide evidence that the Y gene corresponds to the intracellular carotenoid-binding protein (CBP) gene. In the Y recessive strain, the absence of an exon, likely due to an incorrect mRNA splicing caused by a transposon-associated genomic deletion, generates a nonfunctional CBP mRNA, resulting in colorless hemolymph and white cocoons. Enhancement of carotenoid uptake and coloration of the white cocoon was achieved by germ-line transformation with the CBP gene. This study demonstrates the existence of a genetically facilitated intracellular process beyond passive diffusion for carotenoid uptake in the animal phyla, and paves the way for modulating silk color and lipid content through genetic engineering.
This article was published in Proc Natl Acad Sci U S A and referenced in Journal of Bioequivalence & Bioavailability

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version