alexa Carvedilol attenuates neuroleptic-induced orofacial dyskinesia: possible antioxidant mechanisms.
Neurology

Neurology

Journal of Alzheimers Disease & Parkinsonism

Author(s): Naidu PS, Singh A, Kulkarni SK, Naidu PS, Singh A, Kulkarni SK

Abstract Share this page

Abstract 1. Tardive dyskinesia (TD), a syndrome of potentially irreversible, involuntary hyperkinetic disorder occurring in 20 - 40\% of the patient population undergoing chronic neuroleptic treatment is a major limitation of neuroleptic therapy. 2. Oxidative stress and products of lipid peroxidation are implicated in the pathophysiology of various neurological disorders including tardive dyskinesia. 3. Chronic treatment with neuroleptics leads to the development of abnormal oral movements in rats known as vacuous chewing movements (VCMs). Vacuous chewing movements in rats are widely accepted as an animal model of tardive dyskinesia. 4. All the antipsychotics were administered i.p. once daily for 21 days, whereas carvedilol (also i.p.) was administered twice daily. Rats chronically treated with haloperidol (1.0 mg kg(-1)) or chlorpromazine (5 mg kg(-1)) but not clozapine (2 mg kg(-1)) significantly developed vacuous chewing movements and tongue protrusions. Carvedilol dose dependently (0.5 - 2 mg kg(-1)) reduced the haloperidol or chlorpromazine-induced vacuous chewing movements and tongue protrusions. 5. Biochemical analysis revealed that chronic haloperidol or chlorpromazine but not clozapine treatment significantly induced lipid peroxidation and decreased the glutathione (GSH) levels in the forebrains of rats. Chronic haloperidol or chlorpromazine but not clozapine treated rats showed decreased forebrain levels of antioxidant defence enzymes, superoxide dismutase (SOD) and catalase. 6. Co-administration of carvedilol (0.5-2 mg kg(-1)) significantly reduced the lipid peroxidation and restored the decreased glutathione levels by chronic haloperidol or chlorpromazine treatment. Co-administration of carvedilol (1-2 mg kg(-1)) significantly reversed the haloperidol or chlorpromazine-induced decrease in forebrain SOD and catalase levels in rats. However, lower dose of carvedilol (0.5 mg kg(-1)) failed to reverse chronic haloperidol or chlorpromazine-induced decrease in forebrain SOD and catalase levels. 7. The major findings of the present study suggest that oxidative stress might play a significant role in neuroleptic-induced orofacial dyskinesia. In conclusion, carvedilol could be a useful drug for the treatment of neuroleptic-induced orofacial dyskinesia.
This article was published in Br J Pharmacol and referenced in Journal of Alzheimers Disease & Parkinsonism

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords