alexa Carvedilol reduces the severity of atherosclerosis in apolipoprotein E-deficient mice via reducing superoxide production.
Neurology

Neurology

Journal of Alzheimers Disease & Parkinsonism

Author(s): Shimada K, Hirano E, Kimura T, Fujita M, Kishimoto C

Abstract Share this page

Abstract It has been shown that oxidative stress may play an important role in the development of atherosclerosis, and carvedilol has the capacity of reducing oxidative stress. Accordingly, we assessed the hypothesis that carvedilol may reduce the severity of atherosclerosis in apolipoprotein E (apoE)-deficient mice in addition to its hemodynamic effects. Atherosclerosis was induced in apoE-deficient mice fed a high-fat diet containing 0.3\% cholesterol. Mice were orally treated with propranolol (30 mg/kg/day), metoprolol (75 mg/kg/day) and carvedilol (10 mg/kg/day) over eight weeks (each group n = 7-9). Fatty streak plaque developed in apoE-deficient mice, and was suppressed in mice treated with all three drugs. The accumulation of macrophages and expression of CD4(+) and CD8(+) cells in the lesions were decreased by the treatment of the drugs, of which carvedilol was the most effective. In addition, carvedilol reduced superoxide production in aortic walls detected by ethidium staining. There were no significant changes in blood pressure among the study groups. The heart rates in the treated groups were decreased by 4\%-12\% compared with the control group, with carvedilol yielding the highest suppression of heart rate. The β-blocker treatment did not significantly modify the serum lipid profiles. Carvedilol may suppress atherosclerosis via reducing superoxide production, in addition to the hemodynamic modifications in this animal model. This article was published in Exp Biol Med (Maywood) and referenced in Journal of Alzheimers Disease & Parkinsonism

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords