alexa Caspase-mediated cell death predominates following engraftment of neural progenitor cells into traumatically injured rat brain.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): Bakshi A

Abstract Share this page

Neural progenitor cells (NPCs) have been shown to be a promising therapy for cell replacement and gene transfer in neurological diseases including traumatic brain injury (TBI). However, NPCs often survive poorly after transplantation despite immunosuppression, and the mechanisms of graft cell death are unknown. In this study, we evaluated caspase- and calpain-mediated mechanisms of cell death of neonatal mouse C17.2 progenitor cells, transplanted at 24 h following lateral fluid percussion brain injury (FP) in rats. Adult Male Sprague-Dawley rats (n = 30) were subjected to lateral FP injury (n = 18) or sham surgery (n = 12). C17.2 cells labeled with green fluorescent dye (CMFDA) were engrafted in the perilesional deep cortex, and animals were sacrificed at 24 h, 72 h and 1 week post-transplantation. Pro-apoptotic caspase-mediated cleavage products (Ab246) and calpain-mediated cleavage products (Ab38) were detected in the engrafted cells using immunohistochemistry. Only 2 to 4.5% of grafted NPCs were found to survive at 24 h post-transplantation, regardless of injury status of the host brain, although brain-injured animals had significantly fewer graft cells than sham-injured animals. Limited caspase and calpain-mediated graft cell death was observed in both sham- and brain-injured animals, and caspase-mediated graft cell death was significantly greater than calpain-mediated graft cell death in all animals. Brain-injured animals had significantly increased caspase-mediated graft cell death compared to sham-injured animals. These results suggest that both the caspase and calpain family of proteases are involved in graft cell death, and that caspase-mediated apoptotic graft cell death predominates in the acute post-traumatic period following TBI.

This article was published in Brain Res. and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords