alexa Catching fly balls in virtual reality: a critical test of the outfielder problem.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Computer Science & Systems Biology

Author(s): Fink PW, Foo PS, Warren WH

Abstract Share this page

Abstract How does a baseball outfielder know where to run to catch a fly ball? The "outfielder problem" remains unresolved, and its solution would provide a window into the visual control of action. It may seem obvious that human action is based on an internal model of the physical world, such that the fielder predicts the landing point based on a mental model of the ball's trajectory (TP). However, two alternative theories, Optical Acceleration Cancellation (OAC) and Linear Optical Trajectory (LOT), propose that fielders are led to the right place at the right time by coupling their movements to visual information in a continuous "online" manner. All three theories predict successful catches and similar running paths. We provide a critical test by using virtual reality to perturb the vertical motion of the ball in mid-flight. The results confirm the predictions of OAC but are at odds with LOT and TP.
This article was published in J Vis and referenced in Journal of Computer Science & Systems Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version