alexa Cathelicidin signaling via the Toll-like receptor protects against colitis in mice.


Journal of Colitis & Diverticulitis

Author(s): Koon HW, Shih DQ, Chen J, Bakirtzi K, Hing TC,

Abstract Share this page

Abstract BACKGROUND & AIMS: Cathelicidin (encoded by Camp) is an antimicrobial peptide in the innate immune system. We examined whether macrophages express cathelicidin in colons of mice with experimental colitis and patients with inflammatory bowel disease, and we investigated its signaling mechanisms. METHODS: Quantitative, real-time, reverse-transcription polymerase chain reaction (PCR), bacterial 16S PCR, immunofluorescence, and small interfering RNA (siRNA) analyses were performed. Colitis was induced in mice using dextran sulfate sodium (DSS); levels of cathelicidin were measured in human primary monocytes. RESULTS: Expression of cathelicidin increased in the inflamed colonic mucosa of mice with DSS-induced colitis compared with controls. Cathelicidin expression localized to mucosal macrophages in inflamed colon tissues of patients and mice. Exposure of human primary monocytes to Escherichia coli DNA induced expression of Camp messenger RNA, which required signaling by extracellular signal-regulated kinase (ERK); expression was reduced by siRNAs against Toll-like receptor (TLR)9 and MyD88. Intracolonic administration of bacterial DNA to wild-type mice induced expression of cathelicidin in colons of control mice and mice with DSS-induced colitis. Colon expression of cathelicidin was significantly reduced in TLR9(-/-) mice with DSS-induced colitis. Compared with wild-type mice, Camp(-/-) mice developed a more severe form of DSS-induced colitis, particularly after intracolonic administration of E coli DNA. Expression of cathelicidin from bone marrow-derived immune cells regulated DSS induction of colitis in transplantation studies in mice. CONCLUSIONS: Cathelicidin protects against induction of colitis in mice. Increased expression of cathelicidin in monocytes and experimental models of colitis involves activation of TLR9-ERK signaling by bacterial DNA. This pathway might be involved in the pathogenesis of ulcerative colitis. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.
This article was published in Gastroenterology and referenced in Journal of Colitis & Diverticulitis

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version