alexa CD146+ human umbilical cord perivascular cells maintain stemness under hypoxia and as a cell source for skeletal regeneration.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): Tsang WP, Shu Y, Kwok PL, Zhang F, Lee KK,

Abstract Share this page

Abstract The human umbilical cord perivascular cells (HUCPVCs) have been considered as an alternative source of mesenchymal progenitors for cell based regenerative medicine. However, the biological properties of these cells remain to be well characterized. In the present study, HUCPVCs were isolated and sorted by CD146(+) pericyte marker. The purified CD146(+) HUCPVCs were induced to differentiate efficiently into osteoblast, chondrocyte and adipocyte lineages in vitro. Six weeks following subcutaneous transplantation of CD146(+) HUCPVCs-Gelfoam-alginate 3D complexes in severe combined immunodeficiency (SCID) mice, newly formed bone matrix with embedded osteocytes of donor origin was observed. The functional engraftment of CD146(+) HUCPVCs in the new bone regenerates was further confirmed in a critical-sized bone defect model in SCID mice. Hypoxic conditions suppressed osteogenic differentiation while increased cell proliferation and colony-forming efficiency of CD146(+) HUCPVCs as compared to that under normoxic conditions. Re-oxygenation restored the multi-differentiation potential of the CD146(+) HUCPVCs. Western blot analysis revealed an upregulation of HIF-1α, HIF-2α, and OCT-4 protein expression in CD146(+) HUCPVCs under hypoxia, while there was no remarkable change in SOX2 and NANOG expression. The gene expression profiles of stem cell transcription factors between cells treated by normoxia and hypoxic conditions were compared by PCR array analysis. Intriguingly, PPAR-γ was dramatically downregulated (20-fold) in mRNA expression under hypoxia, and was revealed to possess a putative binding site in the Hif-2α gene promoter region. Chromatin immunoprecipitation assays confirmed the binding of PPAR-γ protein to the Hif-2α promoter and the binding was suppressed by hypoxia treatment. Luciferase reporter assay showed that the Hif-2α promoter activity was suppressed by PPAR expression. Thus, PPAR-γ may involve in the regulation of HIF-2α for stemness maintenance and promoting the expansion of CD146(+) HUCPVCs in response to hypoxia. CD146(+) HUCPVCs may serve as a potential autologous cell source for bone regeneration.
This article was published in PLoS One and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords