alexa Cell and drug delivery therapeutics for controlled renal parenchyma regeneration.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Tissue Science & Engineering

Author(s): Minuth WW, Denk L, Glashauser A

Abstract Share this page

Abstract In regenerative medicine much attention is given to stem/progenitor cells for a future therapy of acute and chronic renal failure. However, up to date sound cell biological knowledge about nephron renewal in kidney is lacking. For that reason molecular mechanisms are under intense investigation leading from stem/progenitor cells to regenerated tubules. In this coherence new biomaterials and drug delivery systems have to be elaborated showing an intense stimulation on the renewal of parenchyma. To analyze tubule regeneration a powerful culture system is of fundamental importance. An advanced technique stimulates renal stem/progenitor cells to develop numerous tubules between layers of a polyester fleece. Use of chemically defined Iscove's Modified Dulbecco's Medium (IMDM) containing aldosterone (1x10(-7)M) results in spatial development of renal tubules within 13 days of perfusion culture. Immunohistochemistry exhibits that numerous features of a polarized epithelium are expressed in generated tubules. Transmission electron microscopy (TEM) illuminates that generated tubules contain a polarized epithelium with a tight junctional complex and an intact basal lamina at the basal aspect. Development of tubules depends on applied aldosterone concentration and cannot be mimicked by precursors of its synthesis pathway or by other steroid hormones. Antagonists such as spironolactone or canrenoate prevent the development of tubules. This result illuminates that the tubulogenic development is mediated via the mineralocorticoid receptor (MR). Application of geldanamycin, radicicol, quercetin or KNK 437 in combination with aldosterone blocks development of tubules by disturbing the contact between MR and heat shock proteins 90 and 70. In conclusion, for the first time generation of renal tubules can be simulated under controlled in-vitro conditions. Using this model the effect of numerous innovative biomaterials and drug delivery system can be critically analyzed. 2010 Elsevier B.V. All rights reserved. This article was published in Adv Drug Deliv Rev and referenced in Journal of Tissue Science & Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 12th Edition of International Conference on Tissue Engineering and Regenerative Medicine
    May 10-11, 2018,Frankfurt, Germany
  • 4th International Conference on Synthetic Biology and Tissue Engineering
    June 11-12, 2018 Rome, Italy
  • 9th International Conference on Tissue Science and Regenerative Medicine
    July 19-20, 2018 Melbourne, Australia
  • 4th International Conference on Wound Care, Tissue Repair & Regenerative Medicine
    October 5-6, 2018 Los Angeles, USA
  • 9th International Conference on Tissue Engineering and Regenerative Medicine
    November 9-10 , 2018 Atlanta, Georgia ,USA

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords