alexa Cell cycle and developmental regulations of replication factors in mouse embryonic stem cells.
General Science

General Science

Journal of Biotechnology & Biomaterials

Author(s): FujiiYamamoto H, Kim JM, Arai K, Masai H

Abstract Share this page

Abstract Embryonic stem (ES) cells can grow rapidly and permanently while maintaining their differentiation capacity. To gain insight into how the cell cycle progression of undifferentiated murine ES cells is regulated, we have examined the expression patterns of various replication and cell cycle regulators. Most factors including cyclins, Cdc6, and geminin are rather constitutively expressed during the cell cycle of ES cells. Furthermore, the transcript levels of almost all the cell cycle regulators we investigated except for p21 and p27 are higher in undifferentiated ES cells than in murine embryonic fibroblasts (MEFs), and the increased stability of mRNA in ES cells may be partially responsible for this at least with some of the factors. More strikingly, the transcriptional levels of these factors are strongly correlated with the acetylated state of histone H3 at their promoter regions. However, the methylation state of histone or CpG methylation of the promoter region is not generally correlated significantly with the expression pattern of these factors in both cell types. On the protein level, Cdc6, ASK, cyclin A2, and cyclin B1 are extremely abundant in ES cells compared with MEFs. Furthermore, they are rapidly down-regulated upon induction of differentiation of ES cells. The significance of these findings is discussed in relation to the unusual proliferative properties of ES cells in an undifferentiated state. This article was published in J Biol Chem and referenced in Journal of Biotechnology & Biomaterials

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords