alexa Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae.
Genetics & Molecular Biology

Genetics & Molecular Biology

Gene Technology

Author(s): Moore JK, Haber JE

Abstract Share this page

Abstract In Saccharomyces cerevisiae, an HO endonuclease-induced double-strand break can be repaired by at least two pathways of nonhomologous end joining (NHEJ) that closely resemble events in mammalian cells. In one pathway the chromosome ends are degraded to yield deletions with different sizes whose endpoints have 1 to 6 bp of homology. Alternatively, the 4-bp overhanging 3' ends of HO-cut DNA (5'-AACA-3') are not degraded but can be base paired in misalignment to produce +CA and +ACA insertions. When HO was expressed throughout the cell cycle, the efficiency of NHEJ repair was 30 times higher than when HO was expressed only in G1. The types of repair events were also very different when HO was expressed throughout the cell cycle; 78\% of survivors had small insertions, while almost none had large deletions. When HO expression was confined to the G1 phase, only 21\% were insertions and 38\% had large deletions. These results suggest that there are distinct mechanisms of NHEJ repair producing either insertions or deletions and that these two pathways are differently affected by the time in the cell cycle when HO is expressed. The frequency of NHEJ is unaltered in strains from which RAD1, RAD2, RAD51, RAD52, RAD54, or RAD57 is deleted; however, deletions of RAD50, XRS2, or MRE11 reduced NHEJ by more than 70-fold when HO was not cell cycle regulated. Moreover, mutations in these three genes markedly reduced +CA insertions, while significantly increasing the proportion of both small (-ACA) and larger deletion events. In contrast, the rad5O mutation had little effect on the viability of G1-induced cells but significantly reduced the frequency of both +CA insertions and -ACA deletions in favor of larger deletions. Thus, RAD50 (and by extension XRS2 and MRE11) exerts a much more important role in the insertion-producing pathway of NHEJ repair found in S and/or G2 than in the less frequent deletion events that predominate when HO is expressed only in G1.
This article was published in Mol Cell Biol and referenced in Gene Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 2nd International Conference and Expo on Generic Drug Market and Contract Manufacturing
    September 25-26, 2017 Frankfurt, Germany
  • 6th International Conference and Exhibition on Cell and Gene Therapy
    Mar 27-28, 2017 Madrid, Spain
  • 2nd World Congress on Human Genetics & Genetic Disorders
    November 02-03, 2017 Toronto, Canada

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords