alexa Cell-lytic and antibacterial peptides that act by perturbing the barrier function of membranes: facets of their conformational features, structure-function correlations and membrane-perturbing abilities.


Journal of Immunobiology

Author(s): Saberwal G, Nagaraj R

Abstract Share this page

Abstract Almost all hemolytic and antimicrobial peptides form part of the defense mechanism of species widely distributed across the evolutionary scale. Although these peptides are of varying lengths and composition, they form amphiphilic structures in a hydrophobic environment. They also have the ability to form channels in natural and model membranes. Hemolytic peptides have proven to be very useful in studying the mechanism of hemolysis and the permeability properties of red blood cells. Preliminary investigations indicate that these peptides may also be useful in the investigation of complex cellular phenomena like exocytosis and neurotransmission. Although molecules like vancomycin, bacitracin and penicillins have been extensively used as antibiotics for therapeutic purposes, most species throughout the evolutionary scale use peptides as antimicrobial agents. These peptides exert their activity by altering the permeability properties of the bacterial plasma membrane and do not interfere with macro molecular synthesis like the other antibiotics that are presently used in therapies. Hence it is likely that resistance to peptide antibacterial agents may not develop easily. Since the problem of antibiotic resistance is presently a particularly severe one, peptide antibiotics may be the drugs of choice in the future.
This article was published in Biochim Biophys Acta and referenced in Journal of Immunobiology

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version