alexa Cellular and molecular mechanisms of coronary artery spasm. Lessons from animal models
Clinical Sciences

Clinical Sciences

Cardiovascular Pharmacology: Open Access

Author(s): Hiroaki Shimokawa

Abstract Share this page

Coronary artery spasm plays an important role in the pathogenesis of a wide variety of ischemic heart diseases, especially in the Japanese population. Because coronary artery spasm can be induced by a variety of stimuli with different mechanisms of action, the occurrence of the spasm appears to be due to the local hyperreactivity of the coronary artery rather than to an enhanced stimulation with a single mechanism of action. Several lines of evidence indicate that coronary artery spasm is caused primarily by smooth muscle hypercontraction whereas the contribution of endothelial dysfunction may be minimal. In order to elucidate the cellular and molecular mechanisms of the spasm, porcine models of the spasm were developed. In the first model with balloon injury and high-cholesterol feeding, a close topological correlation between the early atherosclerotic lesions and the spastic sites was noted, whereas in the second model with an inflammatory cytokine the potential importance of coronary inflammatory changes, especially at the adventitia, was noted. Subsequent studies in vivo and in vitro demonstrated that protein kinase C (PKC) and Rho-kinase are substantially involved in the intracellular mechanism of the spasm, resulting in increases in the mono- and diphosphorylations of myosin light chain (MLC). Furthermore, molecular biological analyses demonstrated that Rho-kinase is upregulated at the spastic site (at all levels, including mRNA, protein, and activity), resulting in the inhibition of MLC phosphatase through the phosphorylation of its myosin binding subunit and thereby causing the increase in MLC phosphorylations. Preliminary results also suggest that the long-term inhibition of Rho-kinase is effective in inhibiting the development of arteriosclerotic vascular lesions in several porcine models. Thus, Rho-kinase could be regarded as a novel therapeutic target for coronary arteriosclerosis in general and coronary artery spasm in particular.

  • To read the full article Visit
  • Open Access
This article was published in JpnCirc J and referenced in Cardiovascular Pharmacology: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version