alexa Cellular responses to reactive oxygen species-induced DNA damage and aging.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Diabetes & Metabolism

Author(s): Bertram C, Hass R

Abstract Share this page

Abstract Oxidative stress in cells and tissues can occur during pathophysiological developments, e.g., during inflammatory and allergic diseases or during ischemic or toxic and hyperglycemic conditions via the generation of reactive oxygen species (ROS). Moreover, ROS can be generated by radiation (UV, X-rays) and pharmacologically, e.g., by anthracyclins as chemotherapeutic compounds for treatment of a variety of tumors to induce 'stress or aberrant signaling-inducing senescence' (STASIS). Although STASIS is distinguished from intracellular replicative senescence, a variety of cellular mechanisms appear similar in both aging pathways. It is generally accepted that oxidative stress and ROS eventually cause DNA damage, whereby insufficient cellular repair mechanisms may contribute to premature aging and apoptosis. Conversely, ROS-induced imbalances of the signaling pathways for metabolic protein turnover may also result in opposite effects to recruit malfunctioning aberrant proteins and compounds that trigger tumorigenic processes. Consequently, DNA damage plays a role in the development of carcinogenesis, but is also associated with an aging process in cells and organisms. This article was published in Biol Chem and referenced in Journal of Diabetes & Metabolism

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords