alexa Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates.
Chemistry

Chemistry

Journal of Environmental Analytical Chemistry

Author(s): Fontes CM, Gilbert HJ

Abstract Share this page

Abstract Cellulosomes can be described as one of nature's most elaborate and highly efficient nanomachines. These cell bound multienzyme complexes orchestrate the deconstruction of cellulose and hemicellulose, two of the most abundant polymers on Earth, and thus play a major role in carbon turnover. Integration of cellulosomal components occurs via highly ordered protein:protein interactions between cohesins and dockerins, whose specificity allows the incorporation of cellulases and hemicellulases onto a molecular scaffold. Cellulosome assembly promotes the exploitation of enzyme synergism because of spatial proximity and enzyme-substrate targeting. Recent structural and functional studies have revealed how cohesin-dockerin interactions mediate both cellulosome assembly and cell-surface attachment, while retaining the spatial flexibility required to optimize the catalytic synergy within the enzyme complex. These emerging advances in our knowledge of cellulosome function are reviewed here. This article was published in Annu Rev Biochem and referenced in Journal of Environmental Analytical Chemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords