alexa Cerebral malaria: role of microparticles and platelets in alterations of the blood-brain barrier.
Neurology

Neurology

Journal of Neuroinfectious Diseases

Author(s): Combes V, Coltel N, Faille D, Wassmer SC, Grau GE, Combes V, Coltel N, Faille D, Wassmer SC, Grau GE

Abstract Share this page

Abstract Brain lesions of cerebral malaria (CM) are characterised by a sequestration of Plasmodium falciparum-parasitised red blood cells (PRBC), leucocytes and platelets within brain microvessels, by an excessive release of pro-inflammatory cytokines as well as by disruption of the blood-brain barrier (BBB). We evaluated the possibility that PRBC and platelets interact and induce functional alterations in brain endothelium. Using an in vitro model of endothelial lesion, we showed that platelets can act as bridges between PRBC and endothelial cells (EC) allowing the binding of PRBC to endothelium devoid of cytoadherence receptors. Furthermore, platelets potentiated the cytotoxicity of PRBC for brain EC by inducing an alteration of the integrity of their monolayer and increasing their apoptosis. These findings provide insights into the mechanisms by which platelets can be deleterious to the brain endothelium during CM. Another aspect of inflammatory and infectious diseases is that they often lead to activation of vascular and blood cells. Such activation results in an enhanced vesiculation, i.e. the release of circulating microparticles (MP). We thus explored plasma levels of endothelial MP in Malawian children with malaria. Plasma MP numbers were markedly increased on admission only in patients with severe malaria complicated with coma. Using the experimental mouse model of CM, we evaluated the pathogenic implications of MP using genetically deficient mice in which the capacity to vesiculate is impaired. Such mice, lacking the ABCA-1 gene, upon infection by Plasmodium berghei ANKA, showed complete resistance to CM. When purified from infected susceptible animals, MP were able to reduce normal plasma clotting time and to significantly enhance tumour necrosis factor release from naïve macrophages. Altogether these data provide a novel insight into the pathogenic mechanisms leading to the neurological syndrome. The finding that ABCA-1 gene deletion confers complete protection against cerebral pathology, linked to an impaired MP production, provides new potential targets for therapeutic amelioration of severe malaria. This article was published in Int J Parasitol and referenced in Journal of Neuroinfectious Diseases

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords