alexa Changes in the composition of extracellular polymeric substances in activated sludge during anaerobic storage.
Environmental Sciences

Environmental Sciences

Journal of Petroleum & Environmental Biotechnology

Author(s): Nielsen PH, Frlund B, Keiding K

Abstract Share this page

Abstract Changes in the chemical composition of organic compounds in total activated sludge, activated sludge extracellular polymeric substances (EPS), and sludge bulk water during anaerobic storage (12 days) were studied. The background for the study was that anaerobic storage of activated sludge, which often takes place at wastewater treatment plants before dewatering, causes a deterioration of the dewaterability. The reasons are not known at present, but may be related to changes in exopolymer composition of the flocs. The results showed that a fast decrease in total sludge protein and carbohydrate took place within 3 days of anaerobic storage as a result of degradation processes, which accounted for approximately 20\% of the organic fraction. The amount of uronic acids and humic compounds remained almost constant in the sludge. The EPS were extracted from the floc matrix using a cation-exchange resin. In the EPS matrix a similar initial (2-3 days) degradation of proteins and carbohydrate took place, whereas the content of DNA and uronic acids showed minor changes. The extractability of humic compounds increased during the first 3 days of storage. No changes in extractability of the carbohydrate were observed. A fraction of the EPS protein was found to be difficult to extract but was observed to be degraded during the anaerobic storage. The EPS composition was further characterized by high-performance size-exclusion chromatography analysis obtained by on-line UV detection and post-column detection of proteins, carbohydrates, humic compounds and DNA. Four fractions of polysaccharides were found, of which only one was responsible for the decrease in the carbohydrate content observed with storage time. The fraction was presumably of low molecular mass. Humic compounds and volatile fatty acids (acetate and propionate) were released to the bulk water from the flocs during the storage. A possible mechanism to explain the reduced dewaterability developed during anaerobic storage, partly because of the observed changes in EPS, is discussed.
This article was published in Appl Microbiol Biotechnol and referenced in Journal of Petroleum & Environmental Biotechnology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version