alexa Changes of anti-oxidative enzymes and MDA content under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at maturation stage.
Biochemistry

Biochemistry

Journal of Glycobiology

Author(s): HongBo S, ZongSuo L, MingAn S

Abstract Share this page

Abstract Drought is a world-spread problem seriously influencing grain production and quality, the loss of which is the total for other natural disasters, with increasing global climate change making the situation more serious. Wheat is the staple food for more than 35\% of world population, so wheat anti-drought physiology study is of importance to wheat production and biological breeding for the sake of coping with abiotic and biotic conditions. Much research is involved in this hot topic, but the pace of progress is not so large because of drought resistance being a multiple-gene-control quantitative character and wheat genome being larger (16,000Mb). On the other hand, stress adaptive mechanisms are quite different, with stress degree, time course, materials, soil quality status and experimental plots, thus increasing the complexity of the issue in question. Additionally, a little study is related to the whole life circle of wheat, which cannot provide a comprehensive understanding of its anti-drought machinery. We selected 10 kinds of wheat genotypes as materials, which have potential to be applied in practice, and measured change of relative physiological indices through wheat whole growing-developmental circle (i.e. seedling, tillering and maturing). Here, we reported the anti-oxidative results of maturation stage (the results of seedling and tillering stage have been published) in terms of activities of POD, SOD, CAT and MDA content as follows: (1) 10 wheat genotypes can be grouped into three kinds (A-C, respectively) according to their changing trend of the measured indices; (2) A group performed better resistance drought under the condition of treatment level 1 (appropriate level), whose activities of anti-oxidative enzymes (POD, SOD, CAT) were higher and MDA lower; (3) B group exhibited stronger anti-drought under treatment level 2 (light-stress level), whose activities of anti-oxidative enzymes were higher and MDA lower; (4) C group expressed anti-drought to some extent under treatment level 3 (serious-stress level), whose activities of anti-oxidative enzymes were stronger, MDA lower; (5) these results demonstrated that different wheat genotypes have different physiological mechanisms to adapt themselves to changing drought stress, whose molecular basis is discrete gene expression profiling (transcriptom); (6) our results also showed that the concept and method accepted and adopted by most researchers [T.C. Hsiao, Plant response to water stress, Ann. Rev. Plant Physiol. 24 (1973) 519-570], that 75\% FC is a proper supply for higher plants, was doubted, because this level could not reflect the true suitable level of different wheat genotypes. The study in this respect is the key to wheat anti-drought and biological-saving water agriculture; (7) our research can provide insights into physiological mechanisms of crop anti-drought and direct practical materials for wheat anti-drought breeding; (8) the physiological study of wheat is more urgent up-to-date and molecular aspects are needed, but cannot substitute this important part. The combination of both is an important strategy and a key and (9) POD, SOD and CAT activities and MDA content of different wheat genotypes had quite different changing trend at different stages and under different soil water stress conditions, which was linked with their origin of cultivation and individual soil water threshold. This article was published in Colloids Surf B Biointerfaces and referenced in Journal of Glycobiology

Relevant Expert PPTs

Recommended Conferences

  • 2nd International Conference on Biochemistry
    Sep 21-22, 2017 Macau, Hong Kong
  • International Conference on Glycobiology
    Oct 02-04, 2017 Atlanta, USA
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords