alexa Chapter 11 - Reconstitution of membrane proteins in phospholipid bilayer nanodiscs.


Journal of Blood Disorders & Transfusion

Author(s): Ritchie TK, Grinkova YV, Bayburt TH, Denisov IG, Zolnerciks JK,

Abstract Share this page

Abstract Self-assembled phospholipid bilayer Nanodiscs have become an important and versatile tool among model membrane systems to functionally reconstitute membrane proteins. Nanodiscs consist of lipid domains encased within an engineered derivative of apolipoprotein A-1 scaffold proteins, which can be tailored to yield homogeneous preparations of disks with different diameters, and with epitope tags for exploitation in various purification strategies. A critical aspect of the self-assembly of target membranes into Nanodiscs lies in the optimization of the lipid:protein ratio. Here we describe strategies for performing this optimization and provide examples for reconstituting bacteriorhodopsin as a trimer, rhodopsin, and functionally active P-glycoprotein. Together, these demonstrate the versatility of Nanodisc technology for preparing monodisperse samples of membrane proteins of wide-ranging structure.
This article was published in Methods Enzymol and referenced in Journal of Blood Disorders & Transfusion

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version