alexa Characteristics of block by Pb2+ of function of human neuronal L-, N-, and R-type Ca2+ channels transiently expressed in human embryonic kidney 293 cells.
Toxicology

Toxicology

Journal of Drug Metabolism & Toxicology

Author(s): Peng S, Hajela RK, Atchison WD

Abstract Share this page

Abstract Lead (Pb(2+)) is a well-known inhibitor of voltage-dependent Ca(2+) channels in their native environments in several types of cells. However, its effects on discrete Ca(2+) channel phenotypes in isolation have not been well studied. We compared how specific subtypes of human neuronal high-voltage-activated Ca(2+) channels were affected by acute exposure to Pb(2+). Expression cDNA clones of human alpha(1C), alpha(1B), or alpha(1E) subunit genes encoding neuronal L-, N-, and R-subtypes of Ca(2+) channels, respectively, along with a constant alpha(2)delta and beta(3) subunits were transfected into human embryonic kidney 293 cells. Currents through the respective transiently expressed channels were measured using whole-cell recording techniques with Ba(2+) (20 mM) as charge carrier. Extracellular bath applications of Pb(2+) significantly reduced current amplitude through all three types of Ca(2+) channels in a concentration-dependent manner. The order of potency was: alpha(1E) (IC(50) = 0.10 microM), followed by alpha(1C) (IC(50) = 0.38 microM) and alpha(1B) (IC(50) = 1.31 microM). Pb(2+)-induced perturbation of function of alpha(1C) and alpha(1B) containing Ca(2+) channels was more easily reversed than for alpha(1E)-containing Ca(2+) channels after washing with Pb(2+) free solution. The current-voltage relationships were not altered after 3-min exposure to Pb(2+) for any of the three types. However, the steady-state inactivation relationships were shifted to more negative potentials for channels containing alpha(1B) and alpha(1E) subunits, but not for those containing alpha(1C) subunits. Pb(2+) accelerated the inactivation time of current in all three subtypes of Ca(2+) channels in a concentration- and voltage-dependent manner. Therefore, different subtypes of Ca(2+) channels exhibit differential susceptibility to Pb(2+) even when expressed in the same cell type. Current expressed by alpha(1E)-containing channels is more sensitive to Pb(2+) than that expressed by alpha(1C)- or alpha(1B)-containing channels. Several Ca(2+) channel phenotypes are quite sensitive to the inhibitory action of Pb(2+). Furthermore, it seems that Pb(2+) is more likely to combine with Ca(2+) channels in the closed state.
This article was published in Mol Pharmacol and referenced in Journal of Drug Metabolism & Toxicology

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords