alexa Characteristics of TBS-extractable hyperphosphorylated tau species: aggregation intermediates in rTg4510 mouse brain.
Engineering

Engineering

Advances in Robotics & Automation

Author(s): Sahara N, DeTure M, Ren Y, Ebrahim AS, Kang D,

Abstract Share this page

Abstract Conditional overexpression of four-repeat human tau containing the P301L missense mutation in the rTg4510 mouse model of tauopathy leads to progressive accumulation of neurofibrillary tangles and hyperphosphorylated, sarkosyl-insoluble tau species, which are biochemically comparable to abnormal tau characteristic of hereditary tauopathies termed FTDP-17. To fully understand the impact of tau species at different stages of self-assembly on neurodegeneration, we fractionated rTg4510 brain representing several stages of tauopathy to obtain TBS-extractable (S1), high salt/sarkosyl-extractable (S3), and sarkosyl-insoluble (P3) fractions. Under reducing condition, the S1 fraction was demonstrated by western blotting to contain both 50-60 kDa normally-sized and 64 kDa tau. Both are thermo-stable, but the 64 kDa tau showed a higher degree of phosphorylation. Under non-reducing condition, nearly all TBS-extractable 64 kDa tau were detected as ∼130 kDa species consistent with the size of dimer. Quantitative analysis showed ∼80 times more 64 kDa tau in S1 than P3 fraction. Immunoelectron microscopy revealed tau-positive granules/short filaments in S1 fraction. These structures displayed MC1 immunoreactivities indicative of conformational/pathological change of tau. MC1 immunoreactivity was detected by dot blotting in samples from 2.5 month-old mice, whereas Ab39 immunoreactivity indicative of late stages of tau assembly was detected only in P3 fraction. Quantitative analysis also demonstrated a significant inverse correlation between brain weight and 64 kDa tau, but the level of TBS-extractable 64 kDa tau reflects neurodegeneration better than that of sarkosyl-insoluble 64 kDa tau. Together, the findings suggest that TBS-extractable 64 kDa tau production is a potential target for therapeutic intervention of tauopathies.
This article was published in J Alzheimers Dis and referenced in Advances in Robotics & Automation

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords