alexa Characterization and direct quantitation of ceramide molecular species from lipid extracts of biological samples by electrospray ionization tandem mass spectrometry.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Glycomics & Lipidomics

Author(s): Han X

Abstract Share this page

Abstract A rapid, simple, and reliable method has been developed for the characterization and quantitation of ceramide molecular species directly from chloroform extracts of biological samples by electrospray ionization tandem mass spectrometry (ESI/MS/MS). By exploiting the differential fragmentation patterns of deprotonated ceramide ions, individual 2-hydroxy and nonhydroxy ceramide molecular species were readily identified by ESI/MS/MS with the neutral loss of fragments of mass 256.2 and 327.3 which correspond to sphingosine derivatives. The ions generated from the neutral loss of 256.2 (i.e., [M - H - 256.2](-)) are unique for ceramides with N-acyl sphingosine with the 18-carbon homolog. However, the sensitivity for nonhydroxy ceramides in ESI/MS/MS with the neutral loss of 256.2 is approximately threefold higher than that for 2-hydroxy ceramides. The ions resulting from the neutral loss of 327.3 (i.e., [M - H - 327.3](-)) are specific for 2-hydroxy ceramides. Additionally, all ceramides including both 2-hydroxy and nonhydroxy forms can be confirmed and accurately quantitated by ESI/MS/MS with the neutral loss of 240.2 after correction for (13)C isotope factors. This methodology demonstrated a 1000-fold linear dynamic range and a detection limit at the subfemtomole range and was applied to directly quantitate ceramide molecular species in chloroform extracts of biological samples including brain tissues and cell cultures. (C)2002 Elsevier Science (USA). This article was published in Anal Biochem and referenced in Journal of Glycomics & Lipidomics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords