alexa Characterization and identification of productivity-associated rhizobacteria in wheat.


Journal of Plant Pathology & Microbiology

Author(s): Anderson M, Habiger J

Abstract Share this page

Abstract The rhizosphere is populated by a numerous and diverse array of rhizobacteria, and many impact productivity in largely unknown ways. Here we characterize the rhizobacterial community in a wheat variety categorized according to shoot biomass using 16S rRNA pyrosequencing abundance data. Plants were grown in homogenized field soil under greenhouse conditions, and DNA was extracted and pyrosequenced, resulting in 29,007 quality sequences. Operational taxonomic units (OTUs) that were significantly associated with biomass productivity were identified using an exact test adjusted for the false-discovery rate. The productivity deviation expressed as a percentage of the total mean square for regression (PMSR) was determined for each OTU. Out of 719 OTUs, 42 showed significant positive associations and 39 showed significant negative associations (q value, ≤0.05). OTUs with the greatest net positive associations, by genus, were as follows: Duganella, OTU 43 and OTU 3; Janthinobacterium, OTU 278; Pseudomonas, OTU 588; and Cellvibrio, OTU 1847. Those with negative associations were as follows: Bacteria, OTU 273; Chryseobacterium, OTU 508; Proteobacteria, OTU 249; and Enterobacter, OTU 357. Shoot biomass productivity was strongly correlated with the balance between the overall abundances of positive- and negative-productivity-associated OTUs. High-productivity rhizospheres contained 9.2 significant positives for every negatively associated rhizobacterium, while low-productivity rhizospheres showed 2.3 significant negatives for every positively associated rhizobacterium. Overall rhizobacterial community diversity as measured by the Chao1, Shannon, and Simpson indexes was nonlinearly related to productivity, closely fitting a wavelike cubic equation. We conclude that shoot biomass productivity is strongly related to the ratio of positive- to negative-productivity-associated rhizobacteria in the rhizosphere. This study identifies significant OTUs composing the productive and unproductive rhizobacterial communities.
This article was published in Appl Environ Microbiol and referenced in Journal of Plant Pathology & Microbiology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version