alexa Characterization of a biosurfactant produced by Pseudomonas cepacia CCT6659 in the presence of industrial wastes and its application in the biodegradation of hydrophobic compounds in soil.
Agri and Aquaculture

Agri and Aquaculture

Journal of Aquaculture Research & Development

Author(s): Silva EJ, Rocha e Silva NM, Rufino RD, Luna JM, Silva RO,

Abstract Share this page

Abstract The bacterium Pseudomonas cepacia CCT6659 cultivated with 2\% soybean waste frying oil and 2\% corn steep liquor as substrates produced a biosurfactant with potential application in the bioremediation of soils. The biosurfactant was classified as an anionic biomolecule composed of 75\% lipids and 25\% carbohydrates. Characterization by proton nuclear magnetic resonance ((1)H and (13)C NMR) revealed the presence of carbonyl, olefinic and aliphatic groups, with typical spectra of lipids. Four sets of biodegradation experiments were carried out with soil contaminated by hydrophobic organic compounds amended with molasses in the presence of an indigenous consortium, as follows: Set 1-soil+bacterial cells; Set 2-soil+biosurfactant; Set 3-soil+bacterial cells+biosurfactant; and Set 4-soil without bacterial cells or biosurfactant (control). Significant oil biodegradation activity (83\%) occurred in the first 10 days of the experiments when the biosurfactant and bacterial cells were used together (Set 3), while maximum degradation of the organic compounds (above 95\%) was found in Sets 1-3 between 35 and 60 days. It is evident from the results that the biosurfactant alone and its producer species are both capable of promoting biodegradation to a large extent. Copyright © 2014 Elsevier B.V. All rights reserved. This article was published in Colloids Surf B Biointerfaces and referenced in Journal of Aquaculture Research & Development

Relevant Expert PPTs

Relevant Speaker PPTs

  • Gerald J Prud`homme
    Gamma-aminobutyric acid (GABA) treatment blocks inflammatory pathways and promotes survival and proliferation of pancreatic beta cells
    PPT Version | PDF Version
  • David T Denhardt
    Epigenetics and sports medicine
    PPT Version | PDF Version
  • M V Raghavendra Rao
    Medical research – Scorpion as model
    PPT Version | PDF Version
  • Rohin Vinayak
    Role of compassion fatigue in quality of life, and marital satisfaction among spouses of patients with diabetes type 2
    PPT Version | PDF Version
  • Laidoudi Aicha
    Acute renal failure and uveitis, which diagnosis is most likely in internal medicine? Tinu syndrome, through two observations
    PPT Version | PDF Version
  • Saraswathi K
    Diagnosis of different stages of non-proliferative diabetic retinopathy
    PPT Version | PDF Version
  • Zuheir Barsoum
    Zuheir-Barsoum-Khalifa-University-UAE-Life-extension-upgrade-and-repair-of-welded-structures-Towards-the-use-of-High-Strength-Steels
    PPT Version | PDF Version
  • Julian M Menter
    Histology of Normal Human Skin
    PPT Version | PDF Version
  • Mikael Bjerg Caspersen
    Innovative albumin based technology for half-life extension and optimization of Biotherapeutics
    PPT Version | PDF Version
  • Yosef Yarden
    Classically, the 3’untranslated region (3’UTR) is that region in eukaryotic protein-coding genes from the translation termination codon to the polyA signal. It is transcribed as an integral part of the mRNA encoded by the gene. However, there exists another kind of RNA, which consists of the 3’UTR alone, without all other elements in mRNA such as 5’UTR and coding region. The importance of independent 3’UTR RNA (referred as I3’UTR) was prompted by results of artificially introducing such RNA species into malignant mammalian cells. Since 1991, we found that the middle part of the 3’UTR of the human nuclear factor for interleukin-6 (NF-IL6) or C/EBP gene exerted tumor suppression effect in vivo. Our subsequent studies showed that transfection of C/EBP 3’UTR led to down-regulation of several genes favorable for malignancy and to up-regulation of some genes favorable for phenotypic reversion. Also, it was shown that the sequences near the termini of the C/EBP 3’UTR were important for its tumor suppression activity. Then, the C/EBP 3’UTR was found to directly inhibit the phosphorylation activity of protein kinase CPKC in SMMC-7721, a hepatocarcinoma cell line. Recently, an AU-rich region in the C/EBP 3’UTR was found also to be responsible for its tumor suppression. Recently we have also found evidence that the independent C/EBP 3’UTR RNA is actually exists in human tissues, such as fetal liver and heart, pregnant uterus, senescent fibroblasts etc. Through 1990’s to 2000’s, world scientists found several 3’UTR RNAs that functioned as artificial independent RNAs in cancer cells and resulted in tumor suppression. Interestingly, majority of genes for these RNAs have promoter-like structures in their 3’UTR regions, although the existence of their transcribed products as independent 3’UTR RNAs is still to be confirmed. Our studies indicate that the independent 3’UTR RNA is a novel non-coding RNA species whose function should be the regulation not of the expression of their original mRNA, but of some essential life activities of the cell as a whole.
    PPT Version | PDF Version
  • Tarek Kilani
    Counterfeit MEDICINES A GLOBAL THREAT
    PPT Version | PDF Version
  • Angelica Constanta Visan
    Manifestations of Influenza in Romania
    PPT Version | PDF Version
  • Jihea Choi
    Health-related Quality of Life of Adolescent with Idiopathic Scoliosis in Korea
    PPT Version | PDF Version
  • Raquel García Pacheco
    Evaluation of the ppm-h concept for end-of-life RO membrane into recycled NF and UF membranes
    PPT Version | PDF Version
  • Ana de Guzmán Báez
    Gypsum to Gypsum (GtoG): The European life project that aims to transform the gypsum waste market
    PPT Version | PDF Version
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords