alexa Characterization of aqueous lead removal by phosphatic clay: equilibrium and kinetic studies.
Environmental Sciences

Environmental Sciences

Journal of Pollution Effects & Control

Author(s): Singh SP, Ma LQ, Hendry MJ

Abstract Share this page

Abstract Immobilization of heavy metals from contaminated environments is an emerging field of interest from both resource conservation and environmental remediation points of view. This study investigated the feasibility of using phosphatic clay, a waste by-product of the phosphate mining industry, as an effective sorbent for Pb from aqueous effluents. The major parameters controlling aqueous Pb removal, viz. initial metal ion concentrations, solution pH, sorbent amounts, ionic strength and presence of both inorganic and organic ligands were evaluated using batch experiments. Results demonstrated that aqueous Pb removal efficiency of phosphatic clay is controlled mainly by dissolution of phosphatic clay associated fluoroapatite [Ca(10)(PO(4))(5)CaCO(3)(F,Cl,OH)(2)], followed by subsequent precipitation of geochemically stable pyromorphite [Pb(10)(PO(4))(6)(F,Cl,OH)(2)], which was confirmed by both X-ray diffraction (XRD) and scanning electron microscopic (SEM) analysis. Lead removal efficiency of phosphatic clay increased with increasing pH, sorbent amount and decreasing ionic strength. It also depends on the nature of complexing ligands. Formation of insoluble calcium oxalate and lead oxalate in the presence of oxalic acid explained high uptake of Pb by phosphatic clay from aqueous solution. However, Pb sorption kinetics onto phosphatic clay were biphasic, with initially fast reactions followed by slow and continuous Pb removal reactions. The slow reactions may include surface sorption, co-precipitation and diffusion. The exceptional capability of phosphatic clay to remove aqueous Pb demonstrated its potential as a cost effective way to remediate Pb-contaminated water, soils and sediments. This article was published in J Hazard Mater and referenced in Journal of Pollution Effects & Control

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version