alexa Characterization of high-capacity adenovirus production by the quantitative real-time polymerase chain reaction: a comparative study of different titration methods.
Microbiology

Microbiology

Journal of Antivirals & Antiretrovirals

Author(s): Sun ZF, Crettaz J, Olague C, Vales A, Aurrekoetxea, Berraondo P

Abstract Share this page

Abstract BACKGROUND: High-capacity adenoviruses (HC-Ad) hold great promise for the treatment of many diseases. The major drawbacks for the clinical application of this vector concern difficulties with respect to large-scale production, and the absence of standardized methods for production and titration. In the present study, we compare the different methods found in the literature for characterizing HC-Ad production. METHODS: Two productions of the HC-Ad carrying murine IL-12 gene were obtained. The viral titer and adenovirus-helper contamination as well as viral particle concentration of both productions were determined using different methods: (i) quantification of total viral particles by spectrophotometry and plaque assay to estimate first-generation (FG)-helper-Ad contamination; (ii) quantification of HC-Ad and FG-helper-Ad genomes by the quantitative polymerase chain reaction (qPCR) directly from viral stock; (iii) quantification of viral genomes after cell infection by the slot-blot hybridization assay and (iv) qPCR. RESULTS: Dramatic differences with respect to viral titer were found depending on the method used. The first method overestimates HC-Ad titer and underestimates FG-helper-Ad contamination and no information on the infectivity of the HC-Ad is obtained. qPCR analysis of viral stock is more sensitive and accurate, but information about infectivity remains unknown and FG-helper-Ad contamination is overestimated. Quantification of HC-Ad and FG-helper-Ad infectious units by-slot blot DNA hybridization and qPCR assay are found to be equally sensitive and accurate. CONCLUSIONS: The results of the present study demonstrate that a standardized method should be developed for HC-Ad characterization for future clinical applications of this vector. Quantification of HC-Ad production by qPCR is a fast, safe and reliable method for determining HC-Ad and FG-helper-Ad particles and infectious units. Copyright (c) 2008 John Wiley & Sons, Ltd.

This article was published in J Gene Med and referenced in Journal of Antivirals & Antiretrovirals

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords