alexa Characterization of lactose utilization and β-galactosidase in Lactobacillus brevis KB290, the hetero-fermentative lactic acid bacterium.


Journal of Food & Industrial Microbiology

Author(s): Honda H, Yajima N, Saito T

Abstract Share this page

Abstract Unlike dairy lactic acid bacteria, Lactobacillus brevis cannot ferment milk. We characterized the lactose utilization by L. brevis KB290. In a carbohydrate fermentation assay using API 50 CHL, we showed during 7 days L. brevis did not ferment lactose. L. brevis grew to the stationary phase in 2 weeks in MRS broth containing lactose as the carbon source. L. brevis slowly consumed the lactose in the medium. L. brevis hydrolyzed lactose and a lactose analog, o-nitrophenyl-β-D-galactopyranoside (ONPGal). This β-galactosidase activity for ONPGal was not repressed by glucose, galactose, fructose, xylose, or maltose showing the microorganism may not have carbon catabolite repression. We purified the L. brevis β-galactosidase using ammonium sulfate precipitation and several chromatographies. The enzyme's molecular weight is estimated at 72 and 37 kDa using SDS-PAGE analysis. The N-terminal amino acid sequence of the larger protein was 90 \% similar to the sequence of the putative β-galactosidase (YP_796339) and the smaller protein was identical to the sequence of the putative β-galactosidase (YP_796338) in L. brevis ATCC367. This suggests the enzyme is a heterodimeric β-galactosidase. The specific activity of the purified enzyme for lactose is 55 U/mg. We speculate inhibition of lactose transport delays the lactose utilization in L. brevis KB290. This article was published in Curr Microbiol and referenced in Journal of Food & Industrial Microbiology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version