alexa Characterization of N-glucuronidation of the lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) in human liver: importance of UDP-glucuronosyltransferase 1A4.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Next Generation Sequencing & Applications

Author(s): Wiener D, Doerge DR, Fang JL, Upadhyaya P, Lazarus P

Abstract Share this page

Abstract The nicotine-derived tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), is one of the most potent and abundant procarcinogens found in tobacco and tobacco smoke and is considered to be a causative agent for several tobacco-related cancers. Glucuronidation of the major metabolite of NNK, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), has been implicated as an important mechanism for NNK detoxification. To characterize NNAL metabolism by N-glucuronidation in humans, high-pressure liquid chromatography was used to detect glucuronide conjugates of NNAL formed in human liver microsomes in vitro. In addition to peaks corresponding to the O-glucuronides of NNAL (NNAL-O-Gluc), a second series of peaks were observed in human liver microsomes that were identified by liquid chromatography-mass spectrometry to be NNAL N-glucuronides (NNAL-N-Gluc). Microsomes prepared from liver specimens from individual subjects (n = 42) exhibited substantial variability in the levels of NNAL-N-Gluc (49-fold variability) and NNAL-O-Gluc (49-fold variability) formed in vitro. This variability was likely not due to differences in tissue quality, as substantial variability (5-fold) was also observed in the ratio of NNAL-N-Gluc/NNAL-O-Gluc formation, with a mean ratio of 1.7 in the 42 specimens. Liver microsomes from smokers (n = 14) exhibited no significant difference in the levels of either NNAL-N-Gluc or NNAL-O-Gluc formation, or in the ratio of NNAL-N-Gluc/NNAL-O-Gluc formation, as compared with liver microsomes from never smokers (n = 28). Overexpressed UDP-glucuronosyltransferase (UGT) 1A4 exhibited significant levels of N-glucuronidating activity (V(max)/K(m) = 3.11 microl. min(-1). g(-1)) in vitro; no NNAL-N-glucuronide formation was detected for the 11 other overexpressed UGT enzymes tested in these studies. These results demonstrate the importance of N-glucuronidation in the metabolism of NNAL and the role of UGT1A4 in this pathway. This article was published in Drug Metab Dispos and referenced in Journal of Next Generation Sequencing & Applications

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version