alexa Characterization of strain rate sensitivity in pharmaceutical materials using indentation creep analysis.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Katz JM, Buckner IS

Abstract Share this page

Abstract Understanding how a material's response to stress changes as the stress is applied at different rates is important in predicting performance of pharmaceutical powders during tablet compression. Widely used methods for determining strain rate sensitivity (SRS) are empirically based and can often provide inconsistent or misleading results. Indentation creep data, collected during hardness tests on compacts formed from several common tableting excipients, were used to predict each material's relative sensitivity to changes in strain rate. Linear relationships between Ln(indentation hardness) and Ln(strain rate) were observed for all materials tested. The slope values taken from these relationships were compared to traditional strain rate sensitivity estimates based on in-die Heckel analysis. Overall, the results from the two methods were quite similar, but several advantages were evident in the creep data. The most notable advantage was the ability to characterize strain rate sensitivity derived from plastic behavior with little influence of elastic deformation. For example, two grades of corn starch had very similar creep behavior, but their yield pressures were affected very differently when the compaction rate was increased. This inconsistency was related to the difference in the viscoelastic recovery exhibited by these two materials. This new method promises to allow a better understanding of strain rate effects observed during tablet manufacturing. Copyright © 2012 Elsevier B.V. All rights reserved. This article was published in Int J Pharm and referenced in Journal of Nanomedicine & Nanotechnology

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords