alexa Characterization of the [(153)Sm]Sm-EDTMP pharmacokinetics and estimation of radiation absorbed dose on an individual basis.
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Clinical & Experimental Pharmacology

Author(s): Vigna L, Matheoud R, Ridone S, Arginelli D, Della Monica P,

Abstract Share this page

Abstract [(153)Sm]Sm-EDTMP is a radiopharmaceutical used in palliation cares of bone metastases. The purpose of this study is to provide an explicit description of [(153)Sm]Sm-EDTMP pharmacokinetics, adopting a simple three-compartmental model with the analytical expressions calculating the rate constants and determining biodistribution parameters, like radiopharmaceutical uptake and clearance. This biokinetic model allowed us to calculate on an individual basis the dose to bone surface and to red bone marrow and to assess the degree of variability in dosimetric parameters using a fixed administered activity based only on patient weight. In this study twenty patients were enrolled and were treated with [(153)Sm]Sm-EDTMP, administering a fixed activity per kilogram (37 MBq/kg); blood and urine samples were collected during 24 h post treatment. The median value of the administered activity was 2.7 GBq. Blood clearance confirmed that an aliquot of [(153)Sm]Sm-EDTMP rapidly localizes and is retained in bone, while the remainder is rapidly cleared from the blood pool by the urinary system. Our data show a bi-exponential clearance from blood: the rapid component has a half life median value of 6 min (range: 2-24 min), while the slow one has a half life median value of 1.4 h (range: 0.6-5.8 h). Median value of the urinary excretion is 40 (range: 3-75) \% of the administered activity. Our model shows the behaviour of a tracer which is distributed in the extracellular space of the body, localized in the skeleton and excreted via glomerular filtration. Half life median values of [(153)Sm]Sm-EDTMP transferring between compartments, T(1/2) (blood→ECF), T(1/2) (ECF→blood) are 7.4 (range: 1.9-37) and 48 (range: 8-408) min, respectively. Median values of half lives of [(153)Sm]Sm-EDTMP clearance through the urine and of uptake into bone are 1.0 (range: 0.1-6.0) and 1.6 (range: 0.6-9.0) h, respectively. Median value of red marrow absorbed dose is 2.1 (range: 0.7-3.5) Gy and 0.8 (range: 0.3-2.1) Gy/GBq, while median value of bone surface absorbed dose is 11.5 Gy (range: 5.0-18.4) and 4.4 (range: 2.3-14.3) Gy/GBq. It is remarkable that there is a really great biological variability within patients, especially considering the excreted activity. The cumulated activity in bone and red marrow doses were significantly higher in prostate cancer, where metastatic bone lesions are osteoblastic, than in breast cancer where metastatic bone lesions are osteolytic or mixed (lytic/blastic). The relevant biological variability in biodistribution and metabolism of [(153)Sm]Sm-EDTMP suggests that the fixed administered activity based on patient weight is not sufficient to optimize the treatment and a better optimization would be reached by using a predictive dosimetry tailored to individual patient characteristics. Copyright © 2010 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved. This article was published in Phys Med and referenced in Journal of Clinical & Experimental Pharmacology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords