alexa Characterization of the bacterial archaeal diversity in hydrocarbon-contaminated soil.
Environmental Sciences

Environmental Sciences

Journal of Bioremediation & Biodegradation

Author(s): Zhang DC, Mrtelmaier C, Margesin R

Abstract Share this page

Abstract A polyphasic approach combining culture-based methods with molecular methods is useful to expand knowledge on microbial diversity in contaminated soil. Microbial diversity was examined in soil samples from a former industrial site in the European Alps (mainly used for aluminum production and heavily contaminated with petroleum hydrocarbons) by culture-dependent and culture-independent methods. The physiologically active eubacterial community, as revealed by fluorescence-in-situ-hybridization (FISH), accounted for 6.7\% of the total (DAPI-stained) bacterial community. 4.4\% and 2.0\% of the DAPI-stained cells could be attributed to culturable, heterotrophic bacteria able to grow at 20°C and 10°C, respectively. The majority of culturable bacterial isolates (34/48) belonged to the Proteobacteria (with a predominance of Alphaproteobacteria and Gammaproteobacteria), while the remaining isolates were affiliated with the Actinobacteria, Cytophaga-Flavobacterium-Bacteroides and Firmicutes. A high fraction of the culturable, heterotrophic bacterial population was able to utilize hydrocarbons. Actinobacteria were the most versatile and efficient degraders of diesel oil, n-alkanes, phenol and PAHs. The bacterial 16S rRNA gene clone library contained 390 clones that grouped into 68 phylotypes related to the Proteobacteria, Bacteroidetes, Actinobacteria and Spirochaetes. The archaeal 16S rRNA gene library contained 202 clones and 15 phylotypes belonging to the phylum Euryarchaeota; sequences were closely related to those of methanogenic archaea of the orders Methanomicrobiales, Methanosarcinales, Methanobacteriales and Thermoplasmatales. A number of bacterial and archaeal phylotypes in the clone libraries shared high similarities with strains previously described to be involved in hydrocarbon biodegradation. Knowledge of the bacterial and archaeal diversity in the studied soil is important in order to get a better insight into the microbial structure of contaminated environments and to better exploit the bioremediation potential by identifying potential hydrocarbon degraders and consequently developing appropriate bioremediation strategies. Copyright © 2012 Elsevier B.V. All rights reserved. This article was published in Sci Total Environ and referenced in Journal of Bioremediation & Biodegradation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords