alexa Characterization of the bacterial community structure of Sydney Tar Ponds sediment.
General Science

General Science

Journal of Forensic Research

Author(s): Yeung CW, Woo M, Lee K, Greer CW, Yeung CW, Woo M, Lee K, Greer CW

Abstract Share this page

Abstract The Sydney Tar Ponds is one of the largest toxic waste sites in Canada. The bacterial diversity and abundance in the Sydney Tar Ponds sediment was examined using a 16S rRNA gene clone library and denaturing gradient gel electrophoresis (DGGE) with four different primer sets. The clone library was grouped into 19 phylotypes that could be divided into five phyla: Proteobacteria (56.9\%), Actinobacteria (35\%), Acidobacteria (4.9\%), Firmicutes (2.4\%), and Verrucomicrobia (0.8\%). Members of the phyla Actinobacteria (represented mainly by Mycobacterium spp.) and Alphaproteobacteria (represented by Acidocella spp.) comprised the majority of the clone library. This study also revealed that the phylogenetic results obtained from clone library analysis and from DGGE analysis, with all the primer sets, showed some variability. However, similar Mycobacterium spp. and Acidocella spp. were found in all the different DGGE analyses, again suggesting that these two genera are dominant in the Sydney Tar Ponds sediment. In addition, DGGE analysis indicated that primer sets targeting the V3 region produced results that were the most similar to those obtained with the clone library. This article was published in Can J Microbiol and referenced in Journal of Forensic Research

Relevant Expert PPTs

Relevant Speaker PPTs

  • Shuo Wang
    Childhood obesity interacts with the HIF3A variant on plasma ALT mediated by DNA methylation
    PPT Version | PDF Version
  • Werner Boecker
    Syringomatous tumour of the nipple and low-grade adenosquamous carcinoma: Evidence for a common origin
    PPT Version | PDF Version
  • Dongmei Li
    Dongmei Li- University-of-Rochester-An-evaluation-of-statistical-methods-for-DNA-methylation-microarray-data-analysis
    PPT Version | PDF Version
  • Christopher Busby
    The breast cancer epidemic: Evidence for a radiogenic cause
    PPT Version | PDF Version
  • Stephanie Ramos
    Enhanced Delivery of Dna-Based Vaccines and Immunotherapeutics through Next-Generation Electroporation Devices
    PPT Version | PDF Version
  • Tatiana V Macfarlane
    Aspirin use and risk of Head and Neck Cancer: evidence from the INHANCE consortium
    PPT Version | PDF Version
  • Yosef Yarden
    Classically, the 3’untranslated region (3’UTR) is that region in eukaryotic protein-coding genes from the translation termination codon to the polyA signal. It is transcribed as an integral part of the mRNA encoded by the gene. However, there exists another kind of RNA, which consists of the 3’UTR alone, without all other elements in mRNA such as 5’UTR and coding region. The importance of independent 3’UTR RNA (referred as I3’UTR) was prompted by results of artificially introducing such RNA species into malignant mammalian cells. Since 1991, we found that the middle part of the 3’UTR of the human nuclear factor for interleukin-6 (NF-IL6) or C/EBP gene exerted tumor suppression effect in vivo. Our subsequent studies showed that transfection of C/EBP 3’UTR led to down-regulation of several genes favorable for malignancy and to up-regulation of some genes favorable for phenotypic reversion. Also, it was shown that the sequences near the termini of the C/EBP 3’UTR were important for its tumor suppression activity. Then, the C/EBP 3’UTR was found to directly inhibit the phosphorylation activity of protein kinase CPKC in SMMC-7721, a hepatocarcinoma cell line. Recently, an AU-rich region in the C/EBP 3’UTR was found also to be responsible for its tumor suppression. Recently we have also found evidence that the independent C/EBP 3’UTR RNA is actually exists in human tissues, such as fetal liver and heart, pregnant uterus, senescent fibroblasts etc. Through 1990’s to 2000’s, world scientists found several 3’UTR RNAs that functioned as artificial independent RNAs in cancer cells and resulted in tumor suppression. Interestingly, majority of genes for these RNAs have promoter-like structures in their 3’UTR regions, although the existence of their transcribed products as independent 3’UTR RNAs is still to be confirmed. Our studies indicate that the independent 3’UTR RNA is a novel non-coding RNA species whose function should be the regulation not of the expression of their original mRNA, but of some essential life activities of the cell as a whole.
    PPT Version | PDF Version
  • Chioma Nwakanma
    FISH SPECIES IDENTIFICATION AND BIODIVERSIFICATION IN ENUGU METROPOLIS RIVER BY DNA BARCODING
    PPT Version | PDF Version
  • Robert D. Blackledge
    Anticipating an Advance in Forensic DNA
    PPT Version | PDF Version
  • Erdogan Oncun
    DNA IDENTIFICATION OF ANCIENT SKELETAL REMAINS IN SLOVENIA
    PPT Version | PDF Version
  • R Gandhi Gracy
    DO Insect - Bacterial Symbiosis contributing insecticidal resistance: An evidence from Helicoverpa armigera (Hub.) (Lepidoptera: Noctuidae)
    PPT Version | PDF Version
  • Kailash N Gupta
    Molecular characterization and phylogenetic analysis of Citrus mosaic Badna virus (CMBV) associated with Sathgudi sweet orange
    PPT Version | PDF Version
  • I. G. Nweke
    Prevalence of Human Papilloma Virus DNA in HIV Positive Women in Lagos University Teaching Hospital (LUTH) Lagos, Nigeria
    PPT Version | PDF Version
  • Steven M Carr
    Novel quantitative analyses of phylogeographic structure and connectivity among marine populations as inferred from whole-genome mtDNA sequences
    PPT Version | PDF Version
  • Y.C. Li
    Organization and evolution of a novel yeast CDEI-like repeat cervid satellite DNA
    PPT Version | PDF Version

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords