alexa Characterization of the purified hyaluronan synthase from Streptococcus equisimilis.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Glycomics & Lipidomics

Author(s): TlapakSimmons VL, Baron CA, Weigel PH

Abstract Share this page

Abstract Hyaluronan synthase (HAS) utilizes UDP-GlcUA and UDP-GlcNAc in the presence of Mg(2+) to form the GAG hyaluronan (HA). The purified HAS from Streptococcus equisimilis (seHAS) shows high fidelity in that it only polymerizes the native substrates, UDP-GlcNAc and UDP-GlcUA. However, other uridinyl nucleotides and UDP-sugars inhibited enzyme activity, including UDP-GalNAc, UDP-Glc, UDP-Gal, UDP-GalUA, UMP, UDP, and UTP. Purified seHAS was approximately 40\% more active in 25 mM, compared to 50 mM, PO(4) in the presence of either 50 mM NaCl or KCl, and displayed a slight preference for KCl over NaCl. The pH profile was surprisingly broad, with an effective range of pH 6.5-11.5 and the optimum between pH 9 and 10. SeHAS displayed two apparent pK(a) values at pH 6.6 and 11.8. As the pH was increased from approximately 6.5, both K(m) and V(max) increased until pH approximately 10.5, above which the kinetic constants gradually declined. Nonetheless, the overall catalytic constant (120/s) was essentially unchanged from pH 6.5 to 10.5. The enzyme is temperature labile, but more stable in the presence of substrate and cardiolipin. Purified seHAS requires exogenous cardiolipin for activity and is very sensitive to the fatty acyl composition of the phospholipid. The enzyme was inactive or highly activated by synthetic cardiolipins containing, respectively, C14:0 or C18:1(Delta9) fatty acids. The apparent E(act) for HA synthesis is 40 kJ (9.5 kcal/mol) disaccharide. Increasing the viscosity by increasing concentrations of PEG, ethylene glycol, glycerol, or sucrose inhibited seHAS activity. For PEGs, the extent of inhibition was proportional to their molecular mass. PEGs with average masses of 2.7, 11.7, and 20 kg/mol caused 50\% inhibition of V(max) at 21, 6.5, and 3.5 mM, respectively. The apparent K(i) values for ethylene glycol, glycerol, and sucrose were, respectively, 4.5, 3.3, and 1.2 mM.
This article was published in Biochemistry and referenced in Journal of Glycomics & Lipidomics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords