alexa Characterization of the reversible taxol-induced polymerization of plant tubulin into microtubules.
Biochemistry

Biochemistry

Biochemistry & Analytical Biochemistry

Author(s): Bokros CL, Hugdahl JD, Hanesworth VR, Murthy JV, Morejohn LC

Abstract Share this page

Abstract Taxol has been reported to induce the polymerization of plant tubulin into microtubules, albeit weakly when compared to that of mammalian tubulin [Morejohn, L.C., & Fosket, D.E. (1984) J. Cell Biol. 99, 141-147], suggesting that taxol, a product of plant secondary metabolism, may interact poorly with plant microtubules. To test this idea in detail, we have investigated critical parameters affecting taxol-dependent microtubule polymerization and stability using tubulins from model cell lines of maize [Zea mays cv. Black Mexican Sweet (BMS)] and tobacco [Nicotiana tabacum cv. Bright Yellow 2 (BY-2)]. When plant tubulin dimer is isolated by using a modified version of the original method [Morejohn, L.C., & Fosket, D.E. (1982) Nature 297, 426-428], most of the tubulin polymerizes at 25 degrees C, with critical dimer concentrations (Cc) of 0.06 mg/mL for BMS tubulin and 0.13 mg/mL for BY-2 tubulin. When taxol-induced assembly is initiated with a 0-25 degrees C temperature jump, 42\% of polymer is polymorphic, presumably due to aberrant nucleation events. Taxol-induced assembly at 2 degrees C minimizes the formation of polymorphic structures and is much more rapid than that of purified bovine brain tubulin, indicating a functional difference in the polymerization domains of these diverse tubulins. Temperature ramping during taxol-induced polymerization affords > or = 95\% assembly of plant tubulin into polymer consisting of 86\% microtubules, which may be completely depolymerized by a combined treatment with low temperature and Ca2+. We report for the first time that plant tubulin may be subjected to numerous cycles of efficient taxol-induced polymerization and cold/Ca(2+)-induced depolymerization with little loss of polymerization competence. Gel filtration chromatography at low temperature may be used to separate taxol from soluble plant tubulin dimer, which retains its characteristic polymerization and herbicide-binding properties. Our results demonstrate that despite its origin from plants, taxol is a potent drug for the reversible polymerization of plant microtubules.
This article was published in Biochemistry and referenced in Biochemistry & Analytical Biochemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords