alexa Charge-tunable polymers as reversible and recyclable flocculants for the dewatering of microalgae.
Environmental Sciences

Environmental Sciences

Journal of Fundamentals of Renewable Energy and Applications

Author(s): Morrissey KL, He C, Wong MH, Zhao X, Chapman RZ,

Abstract Share this page

Abstract Microalgae-derived biofuels have potential advantages over other renewable, crop-based resources; however, large-scale production is not currently economical due, in part, to challenges in the harvesting step. In this article, we present a novel approach for the dewatering and harvesting of microalgae using flocculants that can be recovered and recycled. Polyampholytes with molecular charges dependent upon pH (ranging from net positively- to net negatively-charged) are used as a model flocculant system and provide reversible electrostatic interactions with the negatively-charged algal cells. These pH-dependent properties allow the polyampholytic flocculants to efficiently desorb from concentrated biomass and, unlike most commercial flocculants that have permanently charged functionalities, be recovered and recycled for further dewatering processes. The behavior of the model polyampholytic flocculants is characterized for the dewatering of Chlorella vulgaris (UTEX 395). The reversible and recyclable flocculants achieve >99\% flocculation efficiencies, are recovered at more than 98 wt\% yields after biomass dewatering, and can be recycled over five times for flocculation. © 2014 Wiley Periodicals, Inc. This article was published in Biotechnol Bioeng and referenced in Journal of Fundamentals of Renewable Energy and Applications

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version