alexa Chelating activity of advanced glycation end-product inhibitors.
Chemistry

Chemistry

Medicinal Chemistry

Author(s): Price DL, Rhett PM, Thorpe SR, Baynes JW

Abstract Share this page

Abstract The advanced glycation end-product (AGE) hypothesis proposes that accelerated chemical modification of proteins by glucose during hyperglycemia contributes to the pathogenesis of diabetic complications. The two most commonly measured AGEs, N(epsilon)-(carboxymethyl)lysine and pentosidine, are glycoxidation products, formed from glucose by sequential glycation and autoxidation reactions. Although several compounds have been developed as AGE inhibitors and are being tested in animal models of diabetes and in clinical trials, the mechanism of action of these inhibitors is poorly understood. In general, they are thought to function as nucleophilic traps for reactive carbonyl intermediates in the formation of AGEs; however alternative mechanisms of actions, such as chelation, have not been rigorously examined. To distinguish between the carbonyl trapping and antioxidant activity of AGE inhibitors, we have measured the chelating activity of the inhibitors by determining the concentration required for 50\% inhibition of the rate of copper-catalyzed autoxidation of ascorbic acid in phosphate buffer. All AGE inhibitors studied were chelators of copper, as measured by inhibition of metal-catalyzed autoxidation of ascorbate. Apparent binding constants for copper ranged from approximately 2 mm for aminoguanidine and pyridoxamine, to 10-100 microm for carnosine, phenazinediamine, OPB-9195 and tenilsetam. The AGE-breakers, phenacylthiazolium and phenacyldimethylthiazolium bromide, and their hydrolysis products, were among the most potent inhibitors of ascorbate oxidation. We conclude that, at millimolar concentrations of AGE inhibitors used in many in vitro studies, inhibition of AGE formation results primarily from the chelating or antioxidant activity of the AGE inhibitors, rather than their carbonyl trapping activity. Further, at therapeutic concentrations, the chelating activity of AGE inhibitors and AGE-breakers may contribute to their inhibition of AGE formation and protection against development of diabetic complications. This article was published in J Biol Chem and referenced in Medicinal Chemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords