alexa Chelating activity of advanced glycation end-product inhibitors.
Chemistry

Chemistry

Medicinal Chemistry

Author(s): Price DL, Rhett PM, Thorpe SR, Baynes JW

Abstract Share this page

Abstract The advanced glycation end-product (AGE) hypothesis proposes that accelerated chemical modification of proteins by glucose during hyperglycemia contributes to the pathogenesis of diabetic complications. The two most commonly measured AGEs, N(epsilon)-(carboxymethyl)lysine and pentosidine, are glycoxidation products, formed from glucose by sequential glycation and autoxidation reactions. Although several compounds have been developed as AGE inhibitors and are being tested in animal models of diabetes and in clinical trials, the mechanism of action of these inhibitors is poorly understood. In general, they are thought to function as nucleophilic traps for reactive carbonyl intermediates in the formation of AGEs; however alternative mechanisms of actions, such as chelation, have not been rigorously examined. To distinguish between the carbonyl trapping and antioxidant activity of AGE inhibitors, we have measured the chelating activity of the inhibitors by determining the concentration required for 50\% inhibition of the rate of copper-catalyzed autoxidation of ascorbic acid in phosphate buffer. All AGE inhibitors studied were chelators of copper, as measured by inhibition of metal-catalyzed autoxidation of ascorbate. Apparent binding constants for copper ranged from approximately 2 mm for aminoguanidine and pyridoxamine, to 10-100 microm for carnosine, phenazinediamine, OPB-9195 and tenilsetam. The AGE-breakers, phenacylthiazolium and phenacyldimethylthiazolium bromide, and their hydrolysis products, were among the most potent inhibitors of ascorbate oxidation. We conclude that, at millimolar concentrations of AGE inhibitors used in many in vitro studies, inhibition of AGE formation results primarily from the chelating or antioxidant activity of the AGE inhibitors, rather than their carbonyl trapping activity. Further, at therapeutic concentrations, the chelating activity of AGE inhibitors and AGE-breakers may contribute to their inhibition of AGE formation and protection against development of diabetic complications. This article was published in J Biol Chem and referenced in Medicinal Chemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords