alexa Chemical characterization and bioactivity of polycyclic aromatic hydrocarbons from non-oxidative thermal treatment of pyrene-contaminated soil at 250-1,000 degrees C.
Environmental Sciences

Environmental Sciences

Journal of Bioremediation & Biodegradation

Author(s): Richter H, Risoul V, Lafleur AL, Plummer EF, Howard JB,

Abstract Share this page

Abstract In this paper we report yields, identities, and mutagenicities of products from heating a polycyclic aromatic hydrocarbon (PAH)-contaminated, Superfund-related synthetic soil matrix without exogenous oxygen. We heated batch samples of soil pretreated with 5.08 wt\% (by weight) pyrene in a tubular furnace under a constant flow of helium gas at 250, 500, 750, and 1,000 +/- 20 degrees C. Dichloromethane (DCM) extracts of cooled residues of heated soil and of volatiles condensed on a cold finger after 1 sec residence time at furnace temperature were assayed gravimetrically and analyzed for PAH by HPLC, HPLC coupled to mass spectrometry, and gas chromatography coupled to mass spectrometry. All four temperatures volatilized pyrene and generated other PAHs, including alkylated pyrenes. We detected bioactive PAHs in the product volatiles: cyclopenta[cd]pyrene (CPP) at 750 and 1,000 degrees C and benzo[a]pyrene (BaP) at 1,000 degrees C. We found a clean soil residue, i.e., no pyrene or other DCM extracts, only at 750 degrees C. Control experiments with uncontaminated soil, pyrene, and Ottawa sand plus 4.89 wt\% pyrene revealed no CPP or BaP production from soil itself, but these experiments imply that pyrene interactions with soil, e.g., soil-bound silica, stimulate CPP and BaP production. We detected mutagenicity to human diploid lymphoblasts (in vitro) in volatiles from 1,000 degrees C heating of soil plus pyrene and sand plus pyrene, and in the residue from 500 degrees C heating of soil plus pyrene. Three plausible pathways for pyrene conversion to other PAHs are a) a reaction with light gas species, e.g., soil- or pyrene-derived acetylene; b) loss of C(2)-units followed by reaction with a PAH; and c) dimerization with further molecular weight growth via cyclodehydrogenation. This study shows that thermal treatment of PAH-polluted soil may generate toxic by-products that require further cleanup by oxidation or other measures.
This article was published in Environ Health Perspect and referenced in Journal of Bioremediation & Biodegradation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 6th World Congress on Biofuels and Bioenergy
    Sep 5-6, 2017 London, UK
  • 6th World Congress on Biopolymers
    September 7-9, 2017 Paris, France
  • 7th International Conference and Exhibition on Biopolymers and Bioplastics
    October 19-21, 2017 San Francisco, USA

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version